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Basic data

From:
(i) k=R or C;
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM x M, ie. partial order that is closed;
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order

<CM x M, ie. partial order that is closed; J S This
allows to define spacelike-separated subsets of M!
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM x M, ie. partial order that is closed;

(i) A =C>(M,k);
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(i) A=C(M,k); SIS A comm. k-algebral
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
< C M xM, ie. partial order that is closed;

(i) A =C(M,k);

(iv) E is a (super) vector bundle over M;
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A =C=(M,k);
(iv) E is a vector bundle over M; so for fixed i € N we set
X =T(J'E);
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM x M, ie. partial order that is closed;
(i) A=C"(M,k);
(iv) E is a vector bundle over M; so for fixed i € N we set
X =T(JE); J\S A proj. f.g. A-module! [Serre-Swan]
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iil) A =C=(M,k):

(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);

(v) Vi =T (Vol(M)) and x € { ,c};
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Basic data

From:

(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM x M, ie. partial order that is closed:;

(iii) A=C=(M,k);

(iv) E is a vector bundle over M; so for fixed i € N we set
X =T(J'E):

(v) Vi =T, (Vol(M)), where Vol(M) = A"PT*M ® oy and
xe{ ,c};
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Basic data

From:

(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(i) A=C>(M,k);

(iv) E is a vector bundle over M; so for fixed i € N we set
X =T(JIE):;

(v) Vi =T (Vol(M)) and x € { ,c}; SIS A proj. A-module!
[Finney-Rotman]
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Basic data

From:
(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A=C>(M.k):

(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);

(v) Vi =T« (Vol(M)) and x € { ,c};

we consider:
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Basic data

From:
(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A =C=(M,k);
(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SAX;
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;
(iii) A=C>(M.k):
(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SaX (=@ (X% ) ~);
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Basic data

From:

(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A=C>(M.k):

(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);

(v) Vi =T« (Vol(M)) and x € { ,c};

we consider:

I <RVAYA
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Basic data

From:
(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iil) A =C=(M,k):
(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SuX;
2. L=V, ®484X;
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<C M xM, ie. partial order that is closed;
(iii) A=C>(M.k):
(iv) E is a vector bundle over M; so for fixed i € N we set
X =T'E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SAX;
2. L=V, @x8aX; S\
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Basic data

From:
(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A =C=(M,k);
(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SuX;
2. L =V, ®484X;
3. 8%,
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<C M XM, ie. partial order that is closed;
(iii) A =C"(M,k):
(iv) E is a vector bundle over M; so for fixed i € N we set
X =T(J'E):
(v) Vo =T« (Vol(M)) and x € { ,c};
we consider:
1. SAX;
2. L =V,.®454X;

3. So%* (: @::ngi)ﬁn/ N);
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;
(iii) A=C>(M.k):
(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SAX;
2. L =V, R4 54X;
3. 8%, SIS
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Basic data

From:

(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A=C>(M.k):

(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);

(v) Vi =T« (Vol(M)) and x € { ,c};

we consider:

1. SAX;
3. 8%, J\JS*
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A =C=(M,k);
(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SuX;
2. L =V, R4 54X;
3. 8%;;
4. To(SZe);
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Basic data

From:
(i) k=R or C;

(i) M is a smooth manifold, provided with a causal order
<CM x M, ie. partial order that is closed;

(iii) A=C™(M,k):
(iv) E is a vector bundle over M; so for fixed i € N we set
X =T(JE);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SaX;
2. L =V,.®4854X;
3. S%;;
4 To(SLe) (= Bmg(S2e)7P2");
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Basic data

From:
(i) k=R or C;
(i) M is a smooth manifold, provided with a causal order
<CM xM, ie. partial order that is closed:;

(iii) A =C=(M,k);
(iv) E is a vector bundle over M; so for fixed i € N we set
X=T('E);
(v) Vi =T« (Vol(M)) and x € { ,c};
we consider:
1. SuX;
2. L =V, R4 54X;
3. 8%;;
4. To(8.2);, SIS
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Basic definitions |: Propagators

A propagator A is a separately continuous bilinear map

A:Te(Vol(M)®J'E) x Te(Vol(M)®J'E) — C,
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Basic definitions |: Propagators

A propagator A is a separately continuous bilinear map
A:Te(Vol(M)®J'E) x I'e(Vol(M) ® J'E) — C,

or, equivalently, an element of

HomA®ﬁA (X ®/3 X,Vé@ﬁvc/)
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Basic definitions |: Propagators

A propagator A is a separately continuous bilinear map
A:T:(Vol(M)®J'E) x To(Vol(M) @ J'E) — C,

or, equivalently, an element of
HomA®BA (X g X,VC{®[3VC{)
N——

Space of distributions (M x M) _J
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Basic definitions |: Propagators

A propagator A is a separately continuous bilinear map
A:Te(Vol(M)®@J'E) x I'o(Vol(M) ®J'E) — C,
or, equivalently, an element of

Homyga (X ©p X,VI@pV/) ~ P' (M x M, (JERJE)").

Herscovich  Renormalization in QFT (after R. Borcherds) Perturbative QFT (after R. Borcherds) 3/16



Basic definitions |: Propagators

A propagator A is a separately continuous bilinear map
A:Te(Vol(M)®@J'E) x I'o(Vol(M) ®J'E) — C,
or, equivalently, an element of
Homyeg (X @p X, V/&gV!) ~ P' (M x M, (JJERJ'E)*).

A propagator A is precut w.r.t. to proper closed convex cones
P, CT;M (p €M), if (roughly)
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Basic definitions |: Propagators

A propagator A is a separately continuous bilinear map
A:Te(Vol(M)®@J'E) x I'o(Vol(M) ®J'E) — C,
or, equivalently, an element of
Homyeg (X @p X, V/&gV!) ~ P' (M x M, (JJERJ'E)*).

A propagator A is precut w.r.t. to proper closed convex cones
P, CTM (peM), if
(i) if (v,w) € WF(, »(A), for any (p,q) € M x M, then —v € &,
and w € Z;
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Basic definitions |: Propagators

A propagator A is a separately continuous bilinear map
A:Te(Vol(M)®@J'E) x I'o(Vol(M) ®J'E) — C,
or, equivalently, an element of
Homyeg (X @p X, V/&gV!) ~ P' (M x M, (JJERJ'E)*).

A propagator A is precut w.r.t. to proper closed convex cones
P, CT:M (peM), if
(i) if (vyw) € WF(, »(A), for any (p,q) € M x M, then —v € &,
and w e Z;

(ii) if (v,w) € WF(, ,,(A), for any p € M, then w = —v.
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Any precut propagator A induces a unique map
A€ HOIIIA®BA (SAX ®g SAX,VCI(g)ﬁVC/)

such that for all 61,...,0,,71,..., T € X and n,m € N

~ ~

A(lM,lM):le, A(IM,Gl...Gn)ZO,

A(O1...0u,T1 ... Tw) = Bum Y, A(O1,Tc(1)) - - - A(Ony Te())-
GES,
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Any precut propagator A induces a unique map
A€ HOIIIA®BA (SAX ®g SAX,VCI(g)ﬁVC/)

such that for all 61,...,0,,71,..., T € X and n,m € N

~ ~

A(lM,lM):le, A(IM,Gl...Gn>=O,

A(O1...0u,T1 ... Tw) = Bum Y, A(O1,Tc(1)) - - - A(Ony Te())-
GES,

Borcherds (roughly) claims that A extends to a (unique) Laplace
pairing
A € Homsagra (S(SaX) ©p S(SaX), ZV/RBEVY).
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Any precut propagator A induces a unique map
A€ HOIIIA®BA (SAX ®g SAX,VCI(g)ﬁVC/)

such that for all 61,...,0,,71,..., T € X and n,m € N

~ ~

A(lM,lM):le, A(IM,Gl...Gn)ZO,

A(O1...0u,T1 ... Tw) = Bum Y, A(O1,Tc(1)) - - - A(Ony Te())-
GES,

Borcherds (roughly) claims that A extends to a (unique) Laplace
pairing
A € Homsagra (S(SaX) ©p S(SaX), ZV/RBEV,).
H/_/ \ J/

~”~

A “bialgebra”? J An “algebra’? J
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Any precut propagator A induces a unique map
A€ HOIIIA®BA (SAX ®g SAX,VCI(%BVC/)

such that for all 61,...,0,,71,..., T € X and n,m € N

~ ~

A(lM,lM):le, A(IM,Gl...Gn):O,

A(O1...0u,T1 ... Tw) = Bum Y, A(O1,Tc(1)) - - - A(Ony Te())-
GES,

Borcherds (roughly) claims that A extends to a (unique) Laplace
pairing
A € Homsagra (S(SaX) ©p S(SaX), ZV/RBEVY).

Borcherds then uses this map in his definition of Feynman measure
(FM) associated with A, which is a cont. linear map @ : S.Z. — C
satisfying @(1) =1, and a recursiveness property involving A.
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The (first) definition of a Laplace pairing

Given a symmetric monoidal category (¢,®,1,7), a unitary and
counitary bialgebra (C, ¢, Ac, 1¢,€&c) in € and an unitary algebra
(A,ua,14), a Laplace pairing is a map (,) :C®C — A in € such that

(cc,d) = (c,d1y) - (', d)), (c,dd") = (cq),d)-{c(2),d"),
(Ic,c) = (c,1¢c) = €c(c)1a,

for all ¢,c’,d,d" € C, where Ac(c) = ¢(;y®c¢(z) and
Ac(d) = d(1)®d ) denotes the coproduct of C.
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The (first) definition of a Laplace pairing

Given a symmetric monoidal category (¢,®,1,7), a unitary and
counitary bialgebra (C, ¢, Ac, 1¢,€&c) in € and an unitary algebra
(A, ua,14), a Laplace pairing isa map (,) : C®C — A in € such that

(cc,d) = (c,d1y) - (', d)), (c,dd") = (cq),d)-{c(2),d"),
(Ic,c) = (c,1¢c) = €c(c)1a,

for all ¢,c’,d,d" € C, where Ac(c) = ¢(;y®c¢(z) and
Ac(d) = d(1)®d ) denotes the coproduct of C.

Questions: What is the sym. monoidal category in the claim of
Borcherds?
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The (first) definition of a Laplace pairing

Given a symmetric monoidal category (¢,®,1,7), a unitary and
counitary bialgebra (C, ¢, Ac, 1¢,€&c) in € and an unitary algebra
(A, ua,14), a Laplace pairing isa map (,) : C®C — A in € such that

(cc'd) = (c,dy) - (' dp)), {c,dd') = (c(1),d) - (c(2),d"),
<1c,C> = <C, lc> = Ec(C)lA,

for all ¢,c’,d,d" € C, where Ac(c) = c(;y®c¢(z) and
Ac(d) = d(1)®d ) denotes the coproduct of C.

Questions: What is the sym. monoidal category in the claim of

Borcherds? J\J™  None!
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The (first) definition of a Laplace pairing

Given a symmetric monoidal category (¢,®,1,7), a unitary and
counitary bialgebra (C, ¢, Ac, 1¢,€&c) in € and an unitary algebra
(A, ua,14), a Laplace pairing isa map (,) : C®C — A in € such that

(cc'd) = (c,dy) - (' dp)), {c,dd') = (c(1),d) - (c(2),d"),
<1c,C> = <C, lc> = Ec(C)lA,

for all ¢,c’,d,d" € C, where Ac(c) = c(;y®c¢(z) and
Ac(d) = d(1)®d ) denotes the coproduct of C.

Questions: What is the sym. monoidal category in the claim of
Borcherds? J\JS™  None!

Reasons:
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The (first) definition of a Laplace pairing

Given a symmetric monoidal category (¢,®,1,7), a unitary and
counitary bialgebra (C, ¢, Ac, 1¢,€&c) in € and an unitary algebra
(A, ua,14), a Laplace pairing isa map (,) : C®C — A in € such that

(cc'd) = (c,dy) - (' dp)), {c,dd') = (c(1),d) - (c(2),d"),
<1c,C> = <C, lc> = 8c(C)1A,

for all ¢,c’,d,d" € C, where Ac(c) = c(;y®c¢(z) and
Ac(d) = d(1)®d ) denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of

Borcherds? J\J™  None!

Reasons:
(1) S(Ss-Z.) has a k-linear product, i.e. over ®;

Herscovich  Renormalization in QFT (after R. Borcherds) The problem of the Laplace pairing 5/ 16



The (first) definition of a Laplace pairing

Given a symmetric monoidal category (¢,®,1,7), a unitary and
counitary bialgebra (C, ¢, Ac, 1¢,€&c) in € and an unitary algebra
(A, ua,14), a Laplace pairing isa map (,) : C®C — A in € such that

(e’ d) = (c,d(1)) - (¢, da)),  (c,dd’) = (cq1y,d) - (c(a),d"),
(1c,c) = (c,1¢) = €c(c) 14,
for all ¢,c’,d,d" € C, where Ac(c) = c(;y®c¢(z) and
Ac(d) = d(1)®d ) denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of

Borcherds? J\J™  None!

Reasons:
(1) S(Ss-Z.) has a k-linear product, i.e. over ®;

(2) S(S4-Z;) should have a priori a coproduct with respect to ®x4
(or something similar).
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The (first) definition of a Laplace pairing

Given a symmetric monoidal category (¢,®,1,7), a unitary and
counitary bialgebra (C, ¢, Ac, 1¢,€&c) in € and an unitary algebra
(A, ua,14), a Laplace pairing isa map (,) : C®C — A in € such that

(ec’,d) = (c,d(1)) - (¢, da)),  (c,dd’) = (cq1y,d) - {c(a),d"),
(le,c) = (¢, 1¢) = &c(c)1a,
for all ¢,c’,d,d" € C, where Ac(c) = c(;y®c¢(z) and
Ac(d) = d(1)®d|y) denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of

Borcherds? J\J™  None!

Reasons:

(1) S(Ss-Z.) has a k-linear product, i.e. over ®;

(2) S(S4-%;) should have a priori a coproduct with respect to ®xy
(or something similar). J\JS™ It doesn't have!

Herscovich  Renormalization in QFT (after R. Borcherds) The problem of the Laplace pairing 5/ 16



The solution: 2-monoidal categories

A double monoidal category is a tuple (¢, ®¢,ls, Xy, Ix), where
(¢,2¢,1z) and (¢ ,X¢,Ix) are monoidal categories.

Herscovich  Renormalization in QFT (after R. Borcherds) The problem of the Laplace pairing 6 /16



The solution: 2-monoidal categories

A double monoidal category is a tuple (¢, ®¢,ls, Xy, Ix), where
(¢,®¢,1z) and (¢,Xy, Ix) are monoidal categories.

A 2-monoidal category [Aguiar-Mahajan, '10; Batanin-Markl, '12;
Street, '12] is a double monoidal category provided with

shapcp: (ARyB) Xy (CR¢ D) = (AKRy C) ®¢ (BXy D)
in € and three morphisms
Ug : I R Iy — Ig, Ag:lx — Ix Q¢ Ix and Vv:lix — I,

in & satisfying several “natural” compatibility conditions.
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The solution: 2-monoidal categories

A double monoidal category is a tuple (¢, ®¢,ls, Xy, Ix), where
(¢,®¢,1z) and (¢,Xy, Ix) are monoidal categories.

A 2-monoidal category [Aguiar-Mahajan, '10; Batanin-Markl, '12;
Street, '12] is a double monoidal category provided with

shapcp: (ARyB) Xy (CR¢ D) = (AKRy C) ®¢ (BXy D)
in € and three morphisms
Ug : I R Iy — Ig, Ag:lx — Ix Q¢ Ix and Vv:lix — I,

in € satisfying several “natural’ compatibility conditions. J \J ™
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Street, '12] is a double monoidal category provided with

shapcp: (ARyB) Xy (CR¢ D) = (AKRy C) ®¢ (BXy D)
in € and three morphisms
Ug : I R Iy — Ig, Ag:lx — Ix Q¢ Ix and Vv:lix — I,

in & satisfying several “natural’ compatibility conditions. The
2-monoidal category is symmetric if (¢,R¢,Is) has a symmetric
twist T compatible with sh and (Ig,Ag, V).
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The solution: 2-monoidal categories

A double monoidal category is a tuple (¢, ®¢,ls, Xy, Ix), where
(¢,®¢,1z) and (¢,Xy, Ix) are monoidal categories.

A 2-monoidal category [Aguiar-Mahajan, '10; Batanin-Markl, '12;
Street, '12] is a double monoidal category provided with

ShA,B,C,D : (A R B) X (C R D) — (A Xes C) R (B Xy D)
in € and three morphisms
Ug : I R Iy — Ig, Ag:lx — Ix Q¢ Ix and Vv:lix — I,

in & satisfying several “natural’ compatibility conditions. The
2-monoidal category is symmetric if (¢’,®¢,Is) has a symmetric
twist T compatible with sh and (Ig,Ag, V).

Any symmetric monoidal category (¢’,®,1,7) is 2-monoidal with
Ry =R =Ny, Iy =1 =Ixg and sh=1id ® T®1id.
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Bialgebras in 2-monoidal categories

Let (¢,®¢,1s,My, Ix,sh) be a 2-monoidal category.
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Bialgebras in 2-monoidal categories

Let (¢,®¢,1s,Xy, Ix,sh) be a 2-monoidal category. A (unitary and
counitary)bialgebra relative to the 2-monoidal category
[Aguiar-Mahajan, '10] is an object B in % provided with:

(1) a unitary alg. struct. (B,u,n) w.r.t. (¢,X¢,Ix);
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Bialgebras in 2-monoidal categories

Let (¥, R¢,l5,Xy,Ix,sh) be a 2-monoidal category. A (unitary and
counitary)bialgebra relative to the 2-monoidal category
[Aguiar-Mahajan, '10] is an object B in % provided with:

(1) a unitary alg. struct. (B,u,n) w.rt. (¢,X¢,Ix);

(2) a counitary coalg. struct. (B,A,€) w.r.t. (¢,0¢,15);

Herscovich  Renormalization in QFT (after R. Borcherds) The problem of the Laplace pairing 7/ 16



Bialgebras in 2-monoidal categories

Let (¥, R¢,l5,Xy,Ix,sh) be a 2-monoidal category. A (unitary and
counitary)bialgebra relative to the 2-monoidal category
[Aguiar-Mahajan, '10] is an object B in % provided with:

(1) a unitary alg. struct. (B,u,n) w.rt. (¢,X¢,Ix);

(2) a counitary coalg. struct. (B,A,€) w.r.t. (¢,0¢,15);

Herscovich  Renormalization in QFT (after R. Borcherds) The problem of the Laplace pairing 7/ 16



Bialgebras in 2-monoidal categories

Let (¥, R¢,l5,Xy,Ix,sh) be a 2-monoidal category. A (unitary and
counitary)bialgebra relative to the 2-monoidal category
[Aguiar-Mahajan, '10] is an object B in % provided with:

(1) a unitary alg. struct. (B,u,n) w.rt. (¢,X¢,Ix);

(2) a counitary coalg. struct. (B,A,€) w.r.t. (¢,0¢,15);

such that

AR A 1@ 1
h
(B B)Reg (B B) > (BReg B) 0eg (B B)
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Bialgebras in 2-monoidal categories (cont.)

and
u A
BXe B— B B B—— B®«¢B
eXee € n n®en
[0 v Ag
Io Reg I ——— I Ix I Iy —— Ix R¢ Ix
commute.
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Bialgebras in 2-monoidal categories (cont.)

and
i A
BXyB——>B B B— - >B®4B
l N T
eRge € n N®¥en
1% % Az
I Reg Iy —— I Iz Ig Ix —— Ix ¢ Ix
commute.

Still an issue: there is no definition of Laplace pairing for bialgebras
in 2-monoidal categories!
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Solution: Framed 2-monoidal categories

A symmetric 2-monoidal category (¢, R¢,ls,T,X¢,Ix,sh) is called
framed [H., '17] if there are:
(a) a symmetric monoidal category (¢, Xy, I, T');
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Solution: Framed 2-monoidal categories

A symmetric 2-monoidal category (¢, R¢,ls,T,X¢,Ix,sh) is called

framed [H., '17] if there are:

(a) a symmetric monoidal category (6", X1, Iy, T');

(b) a faithful functor F : € — ¢’ that is symmetric lax monoidal
w.rt. (¢,2¢,lz,7) (and coherence maps @y and ¢,), and strict

monoidal w.r.t. (¢,X¢,Ix) (and coherence maps vy and y;);
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framed [H., '17] if there are:

(a) a symmetric monoidal category (6", X1, I, T');

(b) a faithful functor F : € — ¢’ that is symmetric lax monoidal
w.r.t. (¢,®¢,ls,T) (and coherence maps @y and ¢,), and strict

monoidal w.r.t. (%,K¢,Ix) (and coherence maps yy and v);
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Solution: Framed 2-monoidal categories

A symmetric 2-monoidal category (¢, R¢,ls,T,X¢,Ix,sh) is called

framed [H., '17] if there are:

(a) a symmetric monoidal category (6", X1, I, T');

(b) a faithful functor F : € — ¢’ that is symmetric lax monoidal
w.r.t. (¢,®¢,ls,T) (and coherence maps @y and ¢,), and strict

monoidal w.r.t. (%,K¢,Ix) (and coherence maps yy and v);
such that

(A,B)¥cer ¢2(C,D)

idp(4)Regr T (F(B),F (C))Mepridp ) V) (AR B,CRD) |?
F(A)Xer F(C)Xepr F(B) X< F(D) F((A®% B)R¢ (C@¢ D))
L | v2(AC) R v (B,D) F(sha pc.p)
(ARl C)Blgr (BB D) 206D b (AR, ) 90 (BB D))

commutes for all objects A, B, C and D in ¥,
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Framed 2-monoidal categories (cont.)

as well as
f;,
/ X / / , Yo
IR Iy ————> Iy I Iy — F(Ix)
P _
PoXepr @ \ (6’1// )~ 1 2
=
F(lg)Repr F(Ig) 0 v |2 F(Ig) Iy R Iy F(Ag)
Vg lz) | VoM Yo |2
Fug) F) ¢ (I, Ix)
F(lp W Iy) ——— F(Ig) F(Ix) F(Ix)Xepr F(Ig) —— F(Ix ®« Ix)
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Framed 2-monoidal categories (cont.)

as well as

X
Igg Mgy Iy ——> I I I F(Ig)

F(lg) R F(Ip) P0 v |2 F(Ig) Iy R Iy F(Ag)
Flug) F) ¢ (I, Ix)
F(lp W Iy) ——— F(Ig) F(Ix) F(Ix)Xepr F(In) —— F(Ix ®¢ Ix)

Theorem 3 (H., '17).

Let A be a unit. comm. alg. in a cocomplete sym. mon. cat.

(¢,®¢,ly,T) such that @ commutes with colimits on each side.
Let B=H"TA be the comm. counit. bialg. in € with deconcatenation
coproduct and the tensor-wise product of A. Then, the category
BMod(%€) of (firm) modules over B in € has natural structure of
framed 2-monoidal category, where ® is given by ®g and X by Q.
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Laplace pairings in framed 2-monoidal categories

Consider
(i) (¢,2¢,ls,T,Ke,Ix,sh) a sym. 2-monoidal category framed
inside of (¢”, X, I, 7') via the functor F;
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Laplace pairings in framed 2-monoidal categories

Consider
(i) (¥,®¢,ls,T,Ke,Ix,sh) a sym. 2-monoidal category framed
inside of (¢”, X, I, 7') via the functor F;
(i) a unit. and counit. bialgebra (C, tuc,Nec, Ac, &) relative to €;
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(i) (¥,®¢,ls,T,Ke,Ix,sh) a sym. 2-monoidal category framed
inside of (¢”, X, I, 7') via the functor F;
(ii) a unit. and counit. bialgebra (C, uc,nc,Ac, €c) relative to €’
(iii) a unit. algebra (A, s ¢,Nae) in (€,®¢,1s).
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Laplace pairings in framed 2-monoidal categories

Consider
(i) (¢,2¢,ls,T,Ke,Ix,sh) a sym. 2-monoidal category framed
inside of (¢”, X, I, 7') via the functor F;
(ii) a unit. and counit. bialgebra (C, uc,nc,Ac, €c) relative to €’
(iii) a unit. algebra (A, g ¢,Nae) in (€,®%,1).
A left Laplace pairing [H., "17] on C relative to € and with values on
Aisamap (,):CXxC— A in € such that

idp ()Mo ¥2(C.C) idp ()Mot Fuc) ¥ (C.0)
F(C)Bleps F(CRep €) ——————3 F(C) Ry F(C) ———— F(CR4 C)

F(Ac)&cglidp(c)&%/idp(c)
F(C®e C)Regr F(C)Repr F(C)

idF(C@ch) X|<g/ 9 (C,0)

V12 (C®ep C,C g C) F(sheccc) F((,)®¢ (,))
F(C®¢ C)Repr F(C®g C) —— F((C®% C)Rey (CR¢ C)) —— F((CR¢ C)@¢% (CR¢x C)) ——= F(A®¢ A)

commutes in &’
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Laplace pairings in framed 2-monoidal categories

(cont.)

and
ideXeen
CRep Iy —— 1€ CRep C
l@ l<,>
Na
c—X o, 4

commutes in €.
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Solution to both problems

Theorem 4 (H., '17).

The construction T (SaX) has a natural structure of bialgebra relative
to the framed sym. 2-monoidal category u74 Mod, whose product is
given by concatenation and whose coproduct is induced by that of
SaX (using the interchange law). Moreover, A extends to a left

(resp., right) Laplace pairing

A € Homugaggura (T (SaX) @p T (SaX), TV QTVY).
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Solution to both problems

Theorem 4 (H., '17).

The construction T (SaX) has a natural structure of bialgebra relative
to the framed sym. 2-monoidal category u74 Mod, whose product is
given by concatenation and whose coproduct is induced by that of
SaX (using the interchange law). Moreover, A extends to a left

(resp., right) Laplace pairing

A € Homuraggura (T (SaX) @p T(SaX), TV, ©TV,).

It has two different algebra structures! J
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The construction of the QFT

Given a local precut propagator A, let .%#5 be the set of all FM
associated with A.
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The construction of the QFT

Given a local precut propagator A, let .%, be the set of all FM

associated with A.
Define the renormalization group ¢4 as the subgroup of the group of
automorphisms of the cocomm. coalgebra S4.% in 4 Mod that are

SaX-colinear.
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The construction of the QFT

Given a local precut propagator A, let .%, be the set of all FM
associated with A.

Define the renormalization group ¢ as the subgroup of the group of
automorphisms of the cocomm. coalgebra S4.% in 4 Mod that are
SaX-colinear.

Theorem 5 (Borcherds, '11; H., '17).

The group & has a natural action on %, that is simple and transitive.
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The construction of the QFT

Given a local precut propagator A, let .%, be the set of all FM

associated with A.
Define the renormalization group ¢ as the subgroup of the group of
automorphisms of the cocomm. coalgebra S4.% in 4 Mod that are

SaX-colinear.

Theorem 5 (Borcherds, '11; H., '17).

The group & has a natural action on %, that is simple and transitive.

Theorem 6 (Borcherds, '11; H., '17).

Under further assumptions on A, namely A is of cut type and
manageable, F A is nonempty.
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The construction of the QFT (cont.)

Fact 7 (Borcherds, '11; H.).

Given any Feynman measure @ : S.%. — C, there exists a unique
extension to a continuous linear map @ : T(SZ;) — C satisfying a
certain recursiveness property.
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The construction of the QFT (cont.)

Fact 7 (Borcherds, '11; H.).

Given any Feynman measure @ : S.%. — C, there exists a unique
extension to a continuous linear map @ : T(SZ;) — C satisfying a

certain recursiveness property.

The restriction @ of @ to Ty(SZ;) is called a free QFT.
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The construction of the QFT (cont.)

Fact 7 (Borcherds, '11; H.).

Given any Feynman measure @ : S.%. — C, there exists a unique
extension to a continuous linear map @ : T(SZ;) — C satisfying a

certain recursiveness property.
4

The restriction @ of @ to Ty(SZ;) is called a free QFT.

Theorem 8 (Borcherds, '11; H.).

The restriction @ of the canonical extension @ : T(S%,) — C of a
FM associated to a local manageable propagator of cut type is equal
on commutators of elements of Ty(S-Z,) whose supports are

spacelike-separated.
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The construction of the QFT (cont.)

The bialgebra S.Z, acts naturally on the algebra Ty(S%,).
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The construction of the QFT (cont.)

The bialgebra S.Z, acts naturally on the algebra Ty(S%,).

Hence, given L; € S.Z. ® C[[A]] an infinitesimal interaction
Lagrangian term, we may exponentiate its action to get an

automorphism exp(iLj) of To(S-Z, @ C[[A]]).
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The construction of the QFT (cont.)

The bialgebra S.Z, acts naturally on the algebra Ty(S%,).

Hence, given L; € S.Z. ® C[[A]] an infinitesimal interaction
Lagrangian term, we may exponentiate its action to get an

automorphism exp(iLj) of To(S-Z, @ C[[A]]).

An interacting QFT is the continuous and C[[A]]-linear map
Q;: TH(SZ. @ C[[A]]) — CJ[[A]] given as the composition of @ and

exp(iLy).
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