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Basic data

From:
(i) k = R or C;

(ii) M is a smooth manifold, provided with a causal order
�✓ M⇥M, i.e. partial order that is closed;

(iii) A =C•(M,k);
(iv) E is a vector bundle over M;
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};

we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc);
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed; This
allows to define spacelike-separated subsets of M!

(iii) A =C•(M,k);
(iv) E is a vector bundle over M;
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};

we consider:

1. SAX ;
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Basic data

From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k); A comm. k-algebra!

(iv) E is a vector bundle over M;
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
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(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a (super) vector bundle over M;

(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};

we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
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(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set
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we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc);

Herscovich Renormalization in QFT (after R. Borcherds) Perturbative QFT (after R. Borcherds) 2 / 16



Basic data
From:
(i) k = R or C;
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�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE); A proj. f.g. A-module! [Serre-Swan]

(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};

we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)), where Vol(M) = LtopT ⇤M⌦oM and

⇤ 2 { ,c};

we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc);
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c}; A proj. A-module!

[Finney-Rotman]

we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc);
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Basic data
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(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
we consider:

1. SAX (=�•
n=0

X⌦An/⇠);

2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc);
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
we consider:

1. SAX ; “Composite fields or Lagrangians”

2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc);
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(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
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Basic data
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(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;

3. SL⇤ (=�•
n=0

L
⌦̃b n
⇤ /⇠);

4. T0(SLc);
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤; “Nonlocal actions (of cpt. supp. if ⇤= c)”

4. T0(SLc);
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤; The mult. gives the time ordered product!

4. T0(SLc);
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc) (=�•

m=0
(SLc)

⌦̃b 2m);
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Basic data
From:
(i) k = R or C;
(ii) M is a smooth manifold, provided with a causal order

�✓ M⇥M, i.e. partial order that is closed;
(iii) A =C•(M,k);
(iv) E is a vector bundle over M; so for fixed i 2 N we set

X = G(JiE);
(v) V⇤ = G⇤(Vol(M)) and ⇤ 2 { ,c};
we consider:

1. SAX ;
2. L⇤ =V⇤ ⌦A SAX ;
3. SL⇤;
4. T0(SLc); The mult. gives the composition product!
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Basic definitions I: Propagators

A propagator D is a separately continuous bilinear map

D : Gc
�

Vol(M)⌦ JiE
�
⇥Gc

�
Vol(M)⌦ JiE

�
! C,

A propagator D is precut w.r.t. to proper closed convex cones
Pp ✓ T ⇤

p M (p 2 M), if

(i) if (v,w) 2 WF(p,q)(D), for any (p,q) 2 M⇥M, then �v 2 Pp
and w 2 Pq;

(ii) if (v,w) 2 WF(p,p)(D), for any p 2 M, then w =�v.
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�

Space of distributions D 0(M⇥M)

A propagator D is precut w.r.t. to proper closed convex cones
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Basic definitions I: Propagators

A propagator D is a separately continuous bilinear map
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! C,

or, equivalently, an element of

HomA⌦b A
�
X ⌦b X ,V 0

c⌦̃bV 0
c
�
' D 0�M⇥M,(JiE ⇥ JiE)⇤

�
.

A propagator D is precut w.r.t. to proper closed convex cones
Pp ✓ T ⇤

p M (p 2 M), if (roughly)

(i) if (v,w) 2 WF(p,q)(D), for any (p,q) 2 M⇥M, then �v 2 Pp
and w 2 Pq;

(ii) if (v,w) 2 WF(p,p)(D), for any p 2 M, then w =�v.
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Basic definitions I: Propagators

A propagator D is a separately continuous bilinear map

D : Gc
�

Vol(M)⌦ JiE
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or, equivalently, an element of
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c⌦̃bV 0
c
�
' D 0�M⇥M,(JiE ⇥ JiE)⇤

�
.

A propagator D is precut w.r.t. to proper closed convex cones
Pp ✓ T ⇤

p M (p 2 M), if
(i) if (v,w) 2 WF(p,q)(D), for any (p,q) 2 M⇥M, then �v 2 Pp

and w 2 Pq;
(ii) if (v,w) 2 WF(p,p)(D), for any p 2 M, then w =�v.
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Fact 1.

Any precut propagator D induces a unique map

D̃ 2 HomA⌦b A
�
SAX ⌦b SAX ,V 0

c⌦̃bV 0
c
�

such that for all s1, . . . ,sn,t1, . . . ,tm 2 X and n,m 2 N

D̃(1M,1M) = 1M2 , D̃(1M,s1 . . .sn) = 0,

D̃(s1 . . .sn,t1 . . .tm) = dn,m Â
V2Sn

D(s1,tV(1)) . . .D(sn,tV(n)).

Borcherds (roughly) claims that D̃ extends to a (unique) Laplace
pairing

D̂ 2 HomSA⌦b SA
�
S(SAX)⌦b S(SAX),SV 0

c⌦̃b SV 0
c
�
.

Borcherds then uses this map in his definition of Feynman measure
(FM) associated with D, which is a cont. linear map w : SLc ! C
satisfying w(1) = 1, and a recursiveness property involving D̂.
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Fact 1.

Any precut propagator D induces a unique map

D̃ 2 HomA⌦b A
�
SAX ⌦b SAX ,V 0

c⌦̃bV 0
c
�

such that for all s1, . . . ,sn,t1, . . . ,tm 2 X and n,m 2 N

D̃(1M,1M) = 1M2 , D̃(1M,s1 . . .sn) = 0,

D̃(s1 . . .sn,t1 . . .tm) = dn,m Â
V2Sn

D(s1,tV(1)) . . .D(sn,tV(n)).

Borcherds (roughly) claims that D̃ extends to a (unique) Laplace
pairing

D̂ 2 HomSA⌦b SA
�
S(SAX)| {z }⌦b S(SAX),SV 0

c⌦̃b SV 0
c| {z }
�
.

A “bialgebra”? An “algebra”?

Borcherds then uses this map in his definition of Feynman measure
(FM) associated with D, which is a cont. linear map w : SLc ! C
satisfying w(1) = 1, and a recursiveness property involving D̂.
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The (first) definition of a Laplace pairing
Given a symmetric monoidal category (C ,⌦, I,t), a unitary and
counitary bialgebra (C,µC,DC,1C,eC) in C and an unitary algebra
(A,µA,1A), a Laplace pairing is a map h ,i : C⌦C ! A in C such that

hcc0,di= hc,d(1)i · hc0,d(2)i, hc,dd0i= hc(1),di · hc(2),d0i,
h1C,ci= hc,1Ci= eC(c)1A,

for all c,c0,d,d0 2C, where DC(c) = c(1)⌦ c(2) and
DC(d) = d(1)⌦d(2) denotes the coproduct of C.

Questions: What is the sym. monoidal category in the claim of
Borcherds?
Reasons:

(1) S(SALc) has a k-linear product, i.e. over ⌦;
(2) S(SALc) should have a priori a coproduct with respect to ⌦SA

(or something similar).
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The solution: 2-monoidal categories
A double monoidal category is a tuple (C ,⌦C , I⌦,⇥C , I⇥), where
(C ,⌦C , I⌦) and (C ,⇥C , I⇥) are monoidal categories.

A 2-monoidal category [Aguiar-Mahajan, ’10; Batanin-Markl, ’12;
Street, ’12] is a double monoidal category provided with

shA,B,C,D : (A⌦C B)⇥C (C⌦C D)! (A⇥C C)⌦C (B⇥C D)

in C and three morphisms

µ⇥ : I⌦⇥C I⌦ ! I⌦, D⌦ : I⇥ ! I⇥⌦C I⇥ and n : I⇥ ! I⌦,

in C satisfying several “natural” compatibility conditions. The
2-monoidal category is symmetric if (C ,⌦C , I⌦) has a symmetric
twist t compatible with sh and (I⇥,D⌦,n).

Example 2.

Any symmetric monoidal category (C ,⌦, I,t) is 2-monoidal with
⌦C =⌦=⇥C , I⌦ = I = I⇥ and sh = id⌦ t ⌦ id.
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Bialgebras in 2-monoidal categories
Let (C ,⌦C , I⌦,⇥C , I⇥,sh) be a 2-monoidal category.

A (unitary and
counitary)bialgebra relative to the 2-monoidal category
[Aguiar-Mahajan, ’10] is an object B in C provided with:

(1) a unitary alg. struct. (B,µ,h) w.r.t. (C ,⇥C , I⇥);
(2) a counitary coalg. struct. (B,D,e) w.r.t. (C ,⌦C , I⌦);

such that
B

B⌦C B

(B⇥C B)⌦C (B⇥C B)(B⌦C B)⇥C (B⌦C B)

B⇥C B

Dµ

D⇥C D µ ⌦C µ

sh
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Bialgebras in 2-monoidal categories (cont.)

and

B⇥C B
µ
//

e⇥C e

✏✏

B

e

✏✏

B

e

��

B D
// B⌦C B

I⌦⇥C I⌦
µ⇥
// I⌦ I⇥

n
//

h
??

I⌦ I⇥

h

OO

D⌦
// I⇥⌦C I⇥

h⌦C h

OO

commute.

Still an issue: there is no definition of Laplace pairing for bialgebras
in 2-monoidal categories!
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Solution: Framed 2-monoidal categories
A symmetric 2-monoidal category (C ,⌦C , I⌦,t,⇥C , I⇥,sh) is called
framed [H., ’17] if there are:
(a) a symmetric monoidal category (C 0,⇥C 0 , I0⇥,t 0);

(b) a faithful functor F : C ! C 0 that is symmetric lax monoidal
w.r.t. (C ,⌦C , I⌦,t) (and coherence maps j0 and j2), and strict
monoidal w.r.t. (C ,⇥C , I⇥) (and coherence maps y0 and y2);

such that

F(A)⇥C 0 F(B)⇥C 0 F(C)⇥C 0 F(D)

idF(A)⇥C 0 t 0⇥(F(B),F(C))⇥C 0 idF(D)

✏✏

j2(A,B)⇥C 0j2(C,D)
// F(A⌦C B)⇥C 0 F(C⌦C D)

y2(A⌦C B,C⌦C D) ⇠

✏✏

F(A)⇥C 0 F(C)⇥C 0 F(B)⇥C 0 F(D)

y2(A,C)⇥C 0y2(B,D)⇠

✏✏

F
�
(A⌦C B)⇥C (C⌦C D)

�

F(shA,B,C,D)

✏✏

F(A⇥C C)⇥C 0 F(B⇥C D)
j2(A⇥C C,D⇥C D)

// F
�
(A⇥C C)⌦C (B⇥C D)

�

commutes for all objects A, B, C and D in C ,
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F
�
(A⌦C B)⇥C (C⌦C D)

�
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�

commutes for all objects A, B, C and D in C ,

Herscovich Renormalization in QFT (after R. Borcherds) The problem of the Laplace pairing 9 / 16



Solution: Framed 2-monoidal categories
A symmetric 2-monoidal category (C ,⌦C , I⌦,t,⇥C , I⇥,sh) is called
framed [H., ’17] if there are:
(a) a symmetric monoidal category (C 0,⇥C 0 , I0⇥,t 0);
(b) a faithful functor F : C ! C 0 that is symmetric lax monoidal

w.r.t. (C ,⌦C , I⌦,t) (and coherence maps j0 and j2), and strict
monoidal w.r.t. (C ,⇥C , I⇥) (and coherence maps y0 and y2);

such that

F(A)⇥C 0 F(B)⇥C 0 F(C)⇥C 0 F(D)

idF(A)⇥C 0 t 0⇥(F(B),F(C))⇥C 0 idF(D)

✏✏

j2(A,B)⇥C 0j2(C,D)
// F(A⌦C B)⇥C 0 F(C⌦C D)

y2(A⌦C B,C⌦C D) ⇠

✏✏

F(A)⇥C 0 F(C)⇥C 0 F(B)⇥C 0 F(D)

y2(A,C)⇥C 0y2(B,D)⇠

✏✏

F
�
(A⌦C B)⇥C (C⌦C D)

�

F(shA,B,C,D)

✏✏

F(A⇥C C)⇥C 0 F(B⇥C D)
j2(A⇥C C,D⇥C D)

// F
�
(A⇥C C)⌦C (B⇥C D)

�

commutes for all objects A, B, C and D in C ,
Herscovich Renormalization in QFT (after R. Borcherds) The problem of the Laplace pairing 9 / 16



Framed 2-monoidal categories (cont.)
as well as

I0⇥ ⇥C 0 I0⇥

j0⇥C 0 j0

✏✏

l0
I0⇥
⇠
// I0⇥

j0

✏✏

I0⇥
j0

##

y0 ⇠

✏✏

I0⇥

(l0
I0⇥

)�1 ⇠

✏✏

y0

⇠
// F(I⇥)

F(D⌦)

✏✏

F(I⌦)⇥C 0 F(I⌦)

y2(I⌦ ,I⌦) ⇠

✏✏

F(I⌦) I0⇥ ⇥C 0 I0⇥

y0⇥C 0 y0 ⇠

✏✏

F(I⌦⇥C I⌦)
F(µ⇥)
// F(I⌦) F(I⇥)

F(n)

;;

F(I⇥)⇥C 0 F(I⇥)
j2(I⇥ , I⇥)

// F(I⇥⌦C I⇥)

Theorem 3 (H., ’17).

Let A be a unit. comm. alg. in a cocomplete sym. mon. cat.
(C ,⌦C , IC ,t) such that ⌦C commutes with colimits on each side.
Let B = µTA be the comm. counit. bialg. in C with deconcatenation
coproduct and the tensor-wise product of A. Then, the category
B Mod(C ) of (firm) modules over B in C has natural structure of
framed 2-monoidal category, where ⌦ is given by ⌦B and ⇥ by ⌦C .
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Laplace pairings in framed 2-monoidal categories
Consider
(i) (C ,⌦C , I⌦,t,⇥C , I⇥,sh) a sym. 2-monoidal category framed

inside of (C 0,⇥C 0 , I0⇥,t 0) via the functor F ;

(ii) a unit. and counit. bialgebra (C,µC,hC,DC,eC) relative to C ;
(iii) a unit. algebra (A,µA,l,hA,l) in (C ,⌦C , I⌦).
A left Laplace pairing [H., ’17] on C relative to C and with values on
A is a map h ,i : C⇥C C ! A in C such that

F(C)⇥C 0 F(C)⇥C 0 F(C)
idF(C)⇥C 0 y2(C,C)

⇠
//

F(DC )⇥C 0 idF(C)⇥C 0 idF(C)

✏✏

F(C)⇥C 0 F(C⇥C C)
idF(C)⇥C 0 F(µC )

// F(C)⇥C 0 F(C)
y2(C,C)

⇠
// F(C⇥C C)

F(h,i)

✏✏

F(C⌦C C)⇥C 0 F(C)⇥C 0 F(C)

idF(C⌦C C)⇥C 0 j2(C,C)

✏✏

F(A)

F(C⌦C C)⇥C 0 F(C⌦C C)
y2(C⌦C C,C⌦C C)

⇠
// F

�
(C⌦C C)⇥C (C⌦C C)

�F(shC,C,C,C)
// F

�
(C⇥C C)⌦C (C⇥C C)

�F(h ,i⌦C h ,i)
// F(A⌦C A)

F(µA,l)

OO

commutes in C 0
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Laplace pairings in framed 2-monoidal categories
(cont.)

and
C⇥C I⇥

idC⇥C hC
//

r⇥C
✏✏

C⇥C C

h,i

✏✏

C
eC

// I⌦
hA,l

// A

commutes in C .
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Solution to both problems

Theorem 4 (H., ’17).

The construction T (SAX) has a natural structure of bialgebra relative
to the framed sym. 2-monoidal category µ TA Mod, whose product is
given by concatenation and whose coproduct is induced by that of
SAX (using the interchange law). Moreover, D̃ extends to a left
(resp., right) Laplace pairing

D̂ 2 Homµ TA⌦b µ TA
�
T (SAX)⌦b T (SAX),TV 0

c⌦̃b TV 0
c
�
.
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(resp., right) Laplace pairing

D̂ 2 Homµ TA⌦b µ TA
�
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c| {z }
�
.

It has two different algebra structures!
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The construction of the QFT

Given a local precut propagator D, let FD be the set of all FM
associated with D.

Define the renormalization group G as the subgroup of the group of
automorphisms of the cocomm. coalgebra SAL in A Mod that are
SAX-colinear.

Theorem 5 (Borcherds, ’11; H., ’17).

The group G has a natural action on FD that is simple and transitive.

Theorem 6 (Borcherds, ’11; H., ’17).

Under further assumptions on D, namely D is of cut type and
manageable, FD is nonempty.
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The construction of the QFT (cont.)

Fact 7 (Borcherds, ’11; H.).

Given any Feynman measure w : SLc ! C, there exists a unique
extension to a continuous linear map w̆ : T (SLc)! C satisfying a
certain recursiveness property.

The restriction ẘ of w̆ to T0(SLc) is called a free QFT.

Theorem 8 (Borcherds, ’11; H.).

The restriction ẘ of the canonical extension w̆ : T (SLc)! C of a
FM associated to a local manageable propagator of cut type is equal
on commutators of elements of T0(SLc) whose supports are
spacelike-separated.
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The construction of the QFT (cont.)

Fact 9.

The bialgebra SLc acts naturally on the algebra T0(SLc).

Hence, given LI 2 SLc ⌦C[[l ]] an infinitesimal interaction
Lagrangian term, we may exponentiate its action to get an
automorphism exp(iLI) of T0(SLc ⌦C[[l ]]).
An interacting QFT is the continuous and C[[l ]]-linear map
WI : T0(SLc ⌦C[[l ]])! C[[l ]] given as the composition of ẘ and
exp(iLI).
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