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Complete reducibility in Representation Theory

g simple Lie algebra over a field of char. zero, every
finite-dimensional g–module is semi-simple [Weyl theorem of
complete reducibility]

It does not hold for Lie superalgebras except g = osp(1, 2n).

bg–a�ne Lie algebra.

The category of bg–integrable modules in the category O is
semi-simple

The Kazhdan-Lusztig category KLk of bg–modules is semi-simple for
k-generic

If V is a rational vertex operator algebra, then the category of
V –modules is semi-simple.

The Zhu’s algebra of a rational vertex operator algebra is
semi-simple.
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Methods of proving complete reducibility for a�ne vertex

algebras

Lie theoretic approach, by proving that Ext1(M,N) = {0} in certain
categories: Kac-Wakimoto[1988], Kac-Gorelik[2007]

Vertex algebraic methods which use certain aspects of
represenetation theory of VOAs:
[Adamović-Kac-Moseneder-Papi-Peřse, IMRN 2020], [Arakawa,
2016]

Tensor category (TC) approach, recent papers by Creutzig, McRea,
Yang, using tensor product theory of VOA modules.
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Definition of vertex algebra

Vertex algebra is a triple (V ,Y , 1) where

V complex vector space; 1 vacuum vector, Y is a linear map

Y (·, z) : V ! (End V )[[z , z�1]];

a 7! Y (a, z) =
X

n2Z
anz

�n�1
2 (End V )[[z , z�1]]

which satisfies the following conditions on a, b 2 V :
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Definition of a vertex algebra

anb = 0 for n su�ciently large.

[D,Y (a, z)] = Y (D(a), z) = d
dzY (a, z),

where D 2 End V is defined by D(a) = a�21.

Y (1, z) = IV .

Y (a, z)1 2 V [[z ]] and limz!0 Y (a, z)1 = a.

There exist N � 0 (which depends on a and b) such that

(z1 � z2)
N [Y (a, z1),Y (b, z2)] = 0 (locality).
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Representations of vertex algebras

Representation (module) for vertex algebra V is a pair (M,YM)
where

M is a complex vector space , and YM(·, z) is a linear map

YM : V ! End(M)[[z , z�1]], a 7! YM(a, z) =
X

n2Z
anz

�n�1,

which satisfies certain axioms....
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Virasoro vectors and conformal embeddings

Let Vir = �n2ZCL(n)� CC be a Virasoro algebra, i.e.,

[L(m), L(n)] = (m � n)L(m + n) + m3�m
12

�m+n,0C

C is central element.

Vector ! in vertex algebra V is called conformal (or Virasoro vector)
of central charge c if components of the field

Y (!, z) =
X

n2Z
L(n)z�n�2

define a representation of the Virasoro algebra of central charge c .

Let V be a vertex algebra with conformal vector !V , U be its
subalgebra with conformal vector !U . U is conformally embedded
into V if

!U = !V .
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Rational vertex algebras

A vertex algebra V is called rational if it has finitely many
irreducible modules and if the category of V –modules is semisimple.

Rational vertex algebras correspond to rational conformal field
theory

Examples:

Vertex algebras associated to integrable representations of a�ne
Kac–Moody Lie algebras

Minimal models for Virasoro algebras, superconformal algebras,
W-algebras
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A�ne Lie superalgebras

Let g be a finite-dimensional simple Lie superalgebra over C and let
(·, ·) be a nondegenerate super-symmetric bilinear form on g.

The a�ne Lie superalgebra ĝ associated with g is defined as

ĝ = g⌦ C[t, t�1]� CK

where K is the canonical central element and the Lie algebra
structure is given by

[x ⌦ t
n, y ⌦ t

m] = [x , y ]⌦ t
n+m + n(x , y)�n+m,0K .

We will say that M is a ĝ–module of level k if the central element K
acts on M as a multiplication with k .
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A�ne vertex algebras

V
k(g) universal a�ne vertex algebra of level k (k 6= �h

_).

As ĝ–module V
k(g) = U(ĝ)⌦U(ĝ�0+CK) 1.

Vk(g) simple quotient of V k(g).

Let xi , yi , i = 1, . . . , dim g be dual bases of g with respect to form
(·, ·), and let

!sug =
1

2(k + h_)

dim gX

i=1

xi (�1)yi (�1)1 2 Vk(g).

!sug Sugawara Virasoro vector in Vk(g) of central charge

c(sug) =
ksdimg

k + h_
.
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Notations, terminology

Let KLk be the subcategory of Ok consisting of modules M on
which g–acts locally finite.

Modules from KL
k are V

k(g)–modules.

Category Ok : Vk(g)–modules which are in O
k .

Category KLk : Vk(g)–modules which are in KL
k .

Important problem: Classify irreducible modules in KLk .

For generic k : KLk = KLk

Classified for k admissible by T. Arakawa (2015) (conjectured by
D.A, A.Milas in 1995)

Ok is semi-simple for k-admissible.
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Semi-simplicity at admissible levels

Kac Wakimoto in 1988 define the notion of admissible levels and
admissible highest weight modules

Ex. g = sl(n). Level k is called admissible if k + n = p0

p such that
p, p0 2 Z>0, (p, p0) = 1 and p

0
� n.

For two admissible irreducible highest weight module M,N of level
k , Kac-Wakimoto proved (using Lie-theoretic proof):

Ext1(M,N) = {0}.

VOA classification says that every irreducible modules at admissible
level k is admissible.

This proves that Ok is semi-simple on admissible level.
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A�ne W algebra W k
(g, f✓)

Choose root vectors e✓ and f✓ such that

[e✓, f✓] = x , [x , e✓] = e✓, [x , f✓] = �f✓.

ad(x) defines minimal 1

2
Z–gradation:

g = g�1 � g�1/2 � g0 � g1/2 � g1.

Let g\ = {a 2 g0 | (a|x) = 0}.

W
k(g, f✓) is strongly generated by vectors

G
{u}, u 2 g�1/2, of conformal weight 3/2;

J
{a}, u 2 g\ of conformal weight 1;

! conformal vector of central charge

c(g, k) =
ksdimg

k + h_
� 6k + h

_
� 4.

Wk(g, f✓) simple quotient of W k(g, f✓)
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Collapsing levels

If Wk(g, f✓) = Vk(g\), we say that k is a collapsing level.

If k is a collapsing level and if Vk(g\) is not a�ne vertex algebra at
the critical level, then k is a conformal level.

In [AKMPP, J. Algebra (2018)] we classified all collapsing levels.

Interesting cases of collapsing levels:

1 Vk(g\) = C1 .

2 Vk(g\) is a rational vertex algebra.

3 Vk(g\) is admissible a�ne vertex algebra.

4 Vk(g\) is an a�ne vertex algebra at the critical level.
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Collapsing levels

The following theorem was proved by Arakawa–Moreau (2018): Lie
algebra case, AKMPP, J. Algebra (2018): Lie superalgebra case.

Theorem

Wk(g, f✓) = C1 i↵ we are in one of the following cases

(1) k = �
h_

6
� 1 and g is one of the Lie algebras of exceptional

Deligne’s series: A2, G2, D4, F4, E6, E7, E8, or g = psl(m|m)
(m � 2), osp(n + 8|n) (n � 2), spo(2|1), F (4), G (3)

(2) k = �1/2, g = spo(n|m), n � 1.
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Identification of rational VOAs

In the following cases of collapsing levels we identify a rational VOA:

W�2(osp(m|n), f✓) = Vm�n
4

�2
(sl(2)) is rational for m � n 2 2Z,

m � n � 8.

W�4/3(G2, f✓) = V1(sl(2));

W�3/4(spo(2|3), f✓) = V1(sl(2)).

W� n+1

n+2

(D(2, 1;� n+1

n+2
), f✓) = Vn(sl(2)), n 2 Z�1.
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Semi-simplicity in KLk

We prove the following result on complete reducibility result in KLk

Theorem (AKMPP, 2020)

Assume that g is a Lie algebra and k 2 C \ Z�0. Then KLk is a

semi-simple category in the following cases:

k is a collapsing level.

Wk(g, ✓) is a rational vertex operator algebra.
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Semi-simplicity in KLk : Examples

The category KLk is semi-simple in the following cases:

g = D`+1, g = B`, ` � 2, k = �2,

g = A`, ` � 3, k = �1, g = A2`�1, ` � 2, k = �`.

g = D2`, ` � 3, k = �2`+ 3,

g = E6, k = �4, g = E7, k = �6,

g = C`, k = �1� `/2,

g = F4, k = �3.
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On the proof of completely reducibility

Collapsing levels from previous theorem are not admissible, and in
the category Ok we do have indecomposable modules and non-trivial
extensions between irreducibles.

We need to prove that Ext1(M,N) = {0} in the category KLk .

(C) The proof is reduced for proving that for any h.w. module M in
KLk , M is irreducible.

We use QHR function Hf✓ which is exact and non-zero in KLk for
our collapsing levels. Then

Hf✓ (Vk(g)) = Wk(g, ✓).

and for any module M in KLk , we have that Hf✓ (M) is a
Wk(g, ✓)–module.

Using RT of Wk(g, ✓), and properties of functor Hf✓ , we check (C),
implying complete-reducibility.
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VOAs with exactly one ordinary module

Theorem (AKMPP, IMRN, 2020)

Assume that level k and the basic simple Lie superalgebra g satisfy one of

the following conditions:

(1) k = �
h_

6
� 1 and g is one of the Lie algebras of exceptional Deligne’s

series A2, G2, D4, F4, E6, E7, E8, or g = psl(m|m) (m � 2),
osp(n + 8|n) (n � 2), spo(2|1), F (4), G (3) (for both choices of ✓);

(2) k = �h
_/2 + 1 and g = osp(n + 4m + 8, n), n � 2,m � 0.

(3) k = �h
_/2 + 1 and g = D2m, m � 2.

Then Vk(g) is the unique irreducible Vk(g)–module in the category of

ordinary Vk(g)–modules.
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The case of other nilpotent elements

For any nilpotent element f of g, one defines universal W–algebras
W

k(g, f ) as Hf (V k(g)). Consider simple quotient Wk(g, f ).

Level k is called collapsing if Wk(g, f ) collapses to its a�ne vertex
subalgebra.

In the case of admissible a�ne vertex algebras, such collapsing levels
are investigated by Arakawa-van Ekeren-Moreau (2021). But at
admissible levels we already know that Vk(g) is semi-simple.

Question is what is happening beyond admissible levels?

We have two problems:

(1) Construct and classify collapsing non-admissble Vk(g).

(2) Check condition (C) for modules in KLk
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The case of other nilpotent elements

It is natural to use QHR Hf (·).

In the case of minimal reduction f = f✓, we know a priori that
Hf (M) is non-zero for any module in KLk . Moreover, we could
classify modules in KLk using properties of Hf (M).

Unfortunately, such results in unknown in general. The key property
is to investigate vanishing and non-vanishing of Hf (M).

Quite surprisingly, we indeed have modules M in KLk such that
Hf (M) = {0}. So methods of [AKMPP, IMRN, 2020] can not be
directly applied.

Our method is (still very much work in progress in general):

(1) Classify irreducible Vk(g)–modules without using results of
(non)vanishing of cohomology.

(2) Check directly (a posteriori to classification) when Hf (M) is zero or
non-zero, for projective covers of irreducible modules.

(3) Prove property (C) using (1), (2) and some symmetries of VOAs.
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The case k = �5/2 and g = sl(4)

In a joint work with O. Peřse, I. Vukorepa, we test this strategy:

We classify irreducible modules by hard calculations.

We show that k = �5/2 is a collapsing level for f = fsuberg .

We get a family of irreducible modules Mn, n 2 Z such that

Hf (Mn) 6= 0 (n � 0), Hf (Mn) = 0 (n < 0).

Using this and applying a VOA automorphism, we check the
condition (C) and prove that KLk is a semi-simple.

Moreover, KLk is a rigid, braided tensor category.
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A relation with vertex tensor categories and conformal

embeddings

Recent results in the VOA theory by R. McRea and collaborators say:

Assume that there is a conformal embeddings V ,! W of VOAs V
and W such that the the category C of V –modules admits the
vertex algebraic braided tensor category (TC) structure of
Huang-Lepowsky-Zhang. Then the simplicity of the category of
W –modules, implies the simplicity of C.

Assume that we have conformal embeddings Vk(g0) ,! Vk(g), and
Vk(g) is admissible vertex algebra.

Under condition that the category KLk for Vk(g0) is a braided vertex
tensor category, then KLk is semi-simple.

Problem is that we don’t know a priori that Vk(g0) has the braided
vertex tensor category structure. But it is expected that this
conjecture can be proved in general.
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A relation with vertex tensor categories and conformal

embeddings

Series of joint papers with Kac, Moseneder-Frajria, Papi, Peřse give
a family of examples for which we can apply previous arguments:

Vk(gl(2n)) = Vk(sl(2n))⌦M(1) ,! Vk(sl(2n + 1)) at k = �
2n+1

2
,

for n � 2.

Since Vk(sl(2n + 1)) is admissible, we expect that

KLk for Vk(sl(2n)) is a semi-simple for each n � 2.

Proved for n = 2 in [APV, 2021].

Using conformal embedding [AP, SIGMA, 2012]

V�1(Cn) ,! V�1(sl(2n)),

we expect:

KLk is semi-simple for L�1(Cn) and n � 2.
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Thank you!
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