Towards quantum fields on causal symmetric spaces (jt. with Gestur Ólafsson, Vincenzo Morinelli)

Karl-Hermann Neeb

Department of Mathematics, FAU Erlangen-Nürnberg

Afternoon Representation Theory III (Metz)-June 15, 2021

(日) (四) (코) (코) (코) (코)

Outline

- 1 Nets of local observables and von Neumann algebras
- 2 Second Quantization nets
- 3 Nets on homogeneous spaces
- 4 Abstract nets from antiunitary representations
 - 5 Geometric nets from distribution vectors
 - 6 Euler elements
 - 7 Causal symmetric spaces
 - 8 Perspectives

Background on von Neumann algebras

 \mathcal{H} a complex Hilbert space, $B(\mathcal{H})$ bounded operators on \mathcal{H} Commutant of $\mathcal{M} \subseteq B(\mathcal{H})$: $\mathcal{M}' = \{a \in B(\mathcal{H}) : (\forall s \in \mathcal{M})as = sa\}$ von Neumann algebra: $\mathcal{M} \subseteq B(\mathcal{H})$ a *-subalgebra with $\mathcal{M} = \mathcal{M}''$. For a von Neumann algebra $\mathcal{M} \subseteq B(\mathcal{H})$, a vector $\Omega \in \mathcal{H}$ is called

- cyclic if $\overline{\mathcal{M}\Omega} = \mathcal{H}$.
- separating if $M \in \mathcal{M}, M\Omega = 0$ implies M = 0.

Theorem (Tomita 1967, Takesaki 1970)

Any cyclic and separating vector $\Omega \in \mathcal{H}$ for the von Neumann algebra \mathcal{M} determines a conjugation J (=antilinear isometry) and a positive selfadjoint operator $\Delta > 0$ (modular operator) such that

- (i) $J\Delta J = \Delta^{-1}$ (modular relation).
- (ii) $J\mathcal{M}J = \mathcal{M}'$; in particular $\mathcal{M}' \cong \mathcal{M}^{\mathrm{op}}$ (via $a \mapsto Ja^*J$).

(iii) $\Delta^{it}\mathcal{M}\Delta^{-it} = \mathcal{M}$ for every $t \in \mathbb{R}$ (modular automorphism group)

From Ω to (Δ, J) : The operator $S(M\Omega) = M^*\Omega$, $M \in \mathcal{M}$, is densely defined. Its closure has the polar decomposition $\overline{S} = J\Delta^{1/2}$.

Von Neumann algebras in Quantum Field Theory (QFT)

In QFT one studies nets of von Neumann algebras $(\mathcal{M}(\mathcal{O}))_{\mathcal{O}\subseteq M}$ in $B(\mathcal{H})$. Here $\mathcal{M}(\mathcal{O})$ corresponds to observables measurable in the "laboratory" $\mathcal{O}\subseteq M$, an open subset of the space-time manifold M. **Requirements:**

- $\mathcal{O}_1 \subseteq \mathcal{O}_2$ implies $\mathcal{M}(\mathcal{O}_1) \subseteq \mathcal{M}(\mathcal{O}_2)$ (Isotony)
- $\mathcal{O}_1 \subseteq \mathcal{O}'_2$ implies $\mathcal{M}(\mathcal{O}_1) \subseteq \mathcal{M}(\mathcal{O}_2)'$ (Locality) $(\mathcal{O}' = \text{causal compl.} = \text{events that cannot exchange signals with } \mathcal{O})$
- There is a unitary representation (U, H) of a space time symmetry group G such that, for g ∈ G, U(g)M(O)U(g)⁻¹ = M(gO) (Covariance)

Given a unit vector $\Omega \in \mathcal{H}$ (vacuum state), we call $\mathcal{O} \subseteq M$ a test region if Ω is cyclic and separating for $\mathcal{M}(\mathcal{O})$. The Tomita-Takesaki-Thm. provides $(\Delta_{\mathcal{O}}, J_{\mathcal{O}})$ and $\Delta_{\mathcal{O}}^{-it/2\pi}$ defines dynamics on $\mathcal{M}(\mathcal{O})$ (flow of time, Connes-Rovelli '94). How do we get such structures?

ヘロマ 不聞マ 不同マ 不同マ

Second quantization algebras (bosonic case)

For a complex Hilbert space \mathcal{H} , consider the bosonic Fock space

$$\mathcal{F}_+(\mathcal{H}) = \widehat{\oplus}_{n=0}^{\infty} S^n(\mathcal{H}) \quad \text{with} \quad S^0(\mathcal{H}) = \mathbb{C}\Omega, \quad S^1(\mathcal{H}) = \mathcal{H},$$

and the annihilation and creation operators

$$a(\xi)\Omega = 0, \quad a(\xi)(\xi_1 \lor \cdots \lor \xi_n) = \sum_{j=1}^n \langle \xi, \xi_j \rangle \xi_1 \lor \cdots \lor \widehat{\xi_j} \lor \cdots \lor \xi_n$$

$$a^*(\xi)(\xi_1 \vee \cdots \vee \xi_n) = \xi \vee \xi_1 \vee \cdots \vee \xi_n$$

satisfying the canonical commutation relations (CCR)

$$[a(f), a^*(g)] = \langle f, g \rangle \mathbf{1}, \quad [a(f), a(g)] = [a^*(f), a^*(g)] = 0.$$

They lead to the unitary Weyl operators $W(v) = e^{\frac{i}{\sqrt{2}}\overline{a^*(v) + a(v)}}$. They satisfy the Weyl relations

$$W(v)W(w) = e^{-i \operatorname{Im}\langle v, w \rangle/2} W(v+w), \qquad v, w \in \mathcal{H}$$

and define an irreducible rep. of the Heisenberg group $\operatorname{Heis}(\mathcal{H})$ on $\mathcal{F}_{\pm}(\mathcal{H})_{\mathbb{Q}}$

For each closed real subspace $V \subseteq \mathcal{H}$, we obtain the von Neumann algebra

$$\mathcal{R}(V) := W(V)'' = \{W(v) \colon v \in V\}'' \subseteq B(\mathcal{F}_+(\mathcal{H})).$$

Properties (Araki, 1960s):

- Isotony: $\mathcal{R}(V) \subseteq \mathcal{R}(W)$ iff $V \subseteq W$ ($\Rightarrow \mathcal{R}$ injective).
- Duality: R(V)' = R(V') for V' := {x ∈ H: Im⟨x, V⟩ = {0}} symplectic complement ↔ commutant ↔ causal complement
- Covariance: $\mathcal{R}(gV) = U(g)\mathcal{R}(V)U(g)^{-1}$ for $g \in U(\mathcal{H})$, U Fock rep. of $U(\mathcal{H})$: $U(g)(\xi_1 \vee \cdots \vee \xi_n) = g\xi_1 \vee \cdots \vee g\xi_n$.
- $\mathcal{R}(\mathcal{H}) = B(\mathcal{F}_+(\mathcal{H}))$ (irred. of rep. of $\text{Heis}(\mathcal{H})$ and Schur Lemma).
- *V* is cyclic: $\overline{V + iV} = \mathcal{H}$ iff $\Omega \in \mathcal{F}_+(\mathcal{H})$ is cyclic for $\mathcal{R}(V)$.
- V is separating: $V \cap iV = \{0\}$ iff $\Omega \in \mathcal{F}_+(\mathcal{H})$ is separating for $\mathcal{R}(V)$.
- V is standard (cyclic and separating) iff $\Omega \in \mathcal{F}_+(\mathcal{H})$ is cyclic and separating for $\mathcal{R}(V)$.

Then S(v + iw) := v - iw on V + iV is a closed operator on \mathcal{H} , polar decomposition $S = J_V \Delta_V^{1/2}$ defines a conjugation and a positive operator. (Modular structure lives on standard subspaces of \mathcal{H}).

Nets of real subspaces on homogeneous spaces

Let G be a Lie group, $P \subseteq G$ a closed subgroup M = G/P a homogeneous space and (U, \mathcal{H}) a unitary representation of G.

Definition

A net of real subspaces on M is a family $V(\mathcal{O}) \subseteq \mathcal{H}$ of closed real subspaces, $\mathcal{O} \subseteq M$ open, such that

- $\mathcal{O}_1 \subseteq \mathcal{O}_2$ implies $V(\mathcal{O}_1) \subseteq V(\mathcal{O}_2)$ (Isotony)
- $U(g)V(\mathcal{O}) = V(g\mathcal{O})$ (Covariance)

Then second quantization leads to the net $\mathcal{R}(\mathcal{V}(\mathcal{O}))$ of von Neumann algebras on the Fock space $\mathcal{F}_+(\mathcal{H})$ satisfying isotony and covariance.

Problems:

- How to construct such nets containing standard subspaces?
- Which domains $\mathcal{O} \subseteq M$ correspond to standard subspaces $V(\mathcal{O})$?
- Geometric modular group: $\Delta_{V(\mathcal{O})}^{-it/2\pi} = U(\exp th)$ for some $h \in \mathfrak{g}$?

Def: A graded group is a pair (G, G_+) , where $G_+ \subseteq G$ of index 2; $G_- := G \setminus G_+$.

Examples: (of graded groups, where G_+ is the identity component):

• $\mathbb{R}^{\times} \cong \mathbb{R} \times \mathbb{Z}_2$ (dilation group)

- Antiunitary group $AU(\mathcal{H})$ of all unitary and antiunitary operators on \mathcal{H} with $AU(\mathcal{H})_+ = U(\mathcal{H})$.
- Projective (Möbius) group $\mathrm{PGL}_2(\mathbb{R})$, acting on $\mathbb{P}_1(\mathbb{R})\cong\mathbb{S}^1$
- Proper Poincaré group $\mathbb{R}^d \rtimes SO_{1,d-1}(\mathbb{R})$, acting on $\mathbb{R}^{1,d-1}$.

Typical structure: $G \cong G_+ \rtimes {id_G, \tau_G}, \tau_G$ involutive autom. of G_+ .

Def: An antiunitary representation (U, \mathcal{H}) of a graded Lie group (G, G_+) is a morphism $U: G \to AU(\mathcal{H})$ of graded groups, i.e., $G_+ = U^{-1}(U(\mathcal{H}))$, for which all orbit maps $U^{\xi}: G \to \mathcal{H}, g \mapsto U_g \xi$ are continuous.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ = ・ の Q @

Brunetti-Guido-Longo construction

Let $V \subseteq \mathcal{H}$ standard (V + iV dense and $V \cap iV = \{0\}$). Then $V = \operatorname{Fix}(J_V \Delta_V^{1/2})$, J_V conjugation, $\Delta_V > 0$, $J_V \Delta_V J_V = \Delta_V^{-1}$.

Encoding std subspaces in representations: For $V \subseteq \mathcal{H}$ standard,

$$U^V \colon \mathbb{R}^{\times} \to \mathrm{AU}(\mathcal{H}), \quad U^V(e^t) := \Delta_V^{-it/2\pi}, \quad U^V(-1) := J_V$$

is an antiunitary representation of the graded group $\mathbb{R}^{\times}.$ We thus obtain a bijection

$$\operatorname{Stand}(\mathcal{H}) \to \underbrace{\operatorname{Hom}_{\operatorname{gr}}(\mathbb{R}^{\times}, \operatorname{AU}(\mathcal{H}))}_{\text{antiunit. reps. of } \mathbb{R}^{\times}}, \quad V \mapsto U^{V}.$$

Application: The Brunetti–Guido–Longo (BGL) construction If (U, \mathcal{H}) is an antiunitary representation of (G, G_+) , we obtain a map

$$\operatorname{Hom}_{\operatorname{gr}}(\mathbb{R}^{\times}, \mathcal{G}) \ni \gamma \mapsto V_{\gamma} \in \operatorname{Stand}(\mathcal{H})$$

determined uniquely by $U^{V_{\gamma}} = U \circ \gamma \colon \mathbb{R}^{\times} \to \mathrm{AU}(\mathcal{H})$, i.e.,

$$J_\gamma = U(\gamma(-1)), \quad \Delta_\gamma^{-it/2\pi} = U(\gamma(e^t)), \quad \bigvee_{\alpha \in \gamma} = \mathop{\mathrm{Fix}}_{\alpha \in \gamma} (\int_{\mathbb{T}^\gamma} \Delta_{\gamma \in \alpha}^{1/2}).$$

Karl-Hermann Neeb (FAU)

Nets of real subspaces from distribution vectors

Let $U: G \to AU(\mathcal{H})$ be an antiunitary representation. $\mathcal{H}^{\infty} \subseteq \mathcal{H}$ (smooth vectors), $U^{\xi}: G \to \mathcal{H}, g \mapsto U(g)\xi$ smooth. \mathcal{H}^{∞} carries a natural Fréchet topology, which defines a "rigging"

$$\mathcal{H}^{\infty} \hookrightarrow \mathcal{H} \xrightarrow{\eta} \mathcal{H}^{-\infty}, \quad \eta(\xi) = |\xi\rangle$$

 $\mathcal{H}^{-\infty}$ (distribution vectors) = continuous antilinear functionals on \mathcal{H}^{∞} . Any test function $\varphi \in C_c^{\infty}(G, \mathbb{C})$ defines a smearing operator

$$U^{-\infty}(arphi)\colon \mathcal{H}^{-\infty} o \mathcal{H}, \quad \eta\mapsto \int_{\mathcal{G}} arphi(g) \underbrace{(\eta\circ U(g)^{-1})}_{U^{-\infty}(g)\eta} \, dg\in \mathcal{H}.$$

Let $\mathtt{E}\subseteq \mathcal{H}^{-\infty}$ be a real subspace. Then

$$\mathsf{H}^{\mathcal{G}}_{\mathsf{E}}(\mathcal{O}):=\overline{U^{-\infty}(\mathcal{C}^{\infty}_{c}(\mathcal{O},\mathbb{R}))\mathsf{E}}\subseteq\mathcal{H}, \quad \mathcal{O}\subseteq\mathsf{G}$$
 open

defines a G-covariant isotone net of closed real subspaces of \mathcal{H} .

Let M := G/P be a homogeneous space and $q_M \colon G \to G/P, g \mapsto gP$ be the quotient map. Then

$$\mathsf{H}^{\mathcal{M}}_{\mathsf{E}}(\mathcal{O}) := \mathsf{H}^{\mathcal{G}}_{\mathsf{E}}(q_{\mathcal{M}}^{-1}(\mathcal{O})) \subseteq \mathcal{H}, \qquad \mathcal{O} \subseteq \mathcal{M}$$
 open

is a *G*-covariant net of closed real subspaces on *M*. **Problems:**

- How do the two constructions of real subspaces match?
- For which data E, U, O is the subspace $H^M_E(O) \subseteq \mathcal{H}$ standard?
- For a graded homomorphism γ: ℝ[×] → G, find domains O_γ ⊆ M with H^M_E(O_γ) = V_γ.

Assumptions:

- $C_U := \{x \in \mathfrak{g} : -i\partial U(x) \ge 0\}, \quad \partial U(x) = \frac{d}{dt}\Big|_{t=0} U(\exp tx)$ (positive cone of U) is pointed (ker U discrete) and generating ("positive energy representations")
- $G = G_+ \rtimes \{\mathbf{1}, \tau\}$, τ involution on G (needed for BGL construction).
- $\gamma \colon \mathbb{R}^{\times} \to G, \ \gamma(-1) = \tau, \ h = \gamma'(1) \in \mathfrak{g}^{\tau}$ (graded homo.).

э.

Which pairs (h, τ) are interesting?

For $U: G \to \operatorname{AU}(\mathcal{H})$ and $\gamma: \mathbb{R}^{\times} \to G$ as above, define $V := V_{\gamma} \subseteq \mathcal{H}$ by the BGL construction: $J_{V} = U(\tau), \ \Delta_{V} = e^{2\pi i \cdot \partial U(h)}$. The order on the homogeneous space $\mathcal{W}(U, \gamma) := U(G_{+})V_{\gamma} \subseteq \operatorname{Stand}(\mathcal{H})$ is encoded in the closed subsemigroup

$$S_V = \{g \in G_+ \colon U(g)V \subseteq V\} \subseteq G_+.$$

Important information on S_V is contained in its Lie wedge

$$\mathsf{L}(S_V) := \{ x \in \mathfrak{g} \colon (\forall t \ge 0) \; \exp(tx) \in S_V \},\$$

the infinitesimal generators of one-parameter subsemigroups.

Theorem (Structure Theorem for S_V), N. 2020, 2021)

(a) If L(S_V) has interior points, then h = γ'(1) ∈ g is an Euler element, i.e., g = g₁(h) ⊕ g₀(h) ⊕ g₋₁(h) for g_j(h) = {x : [h, x] = jx}, and Ad(γ(-1)) = Ad(τ) = e^{πi ad h} (= diag(-1, 1, -1) w.r.t. grading).
(b) If h is Euler and τ = e^{πi ad h}, then, for C_± = ±C_U ∩ g_{±1}(h), we have S_V = G_V exp(C₊ + C₋) = exp(C₊)G_V exp(C₋) (Koufany decomp.).

The preceding theorem points at the **interesting** homomorphisms $\gamma : \mathbb{R}^{\times} \to G = G_{+} \rtimes \{\mathbf{1}, \tau\}$: $h = \gamma'(1)$ should be an Euler element and $\operatorname{Ad}(\tau) = e^{\pi i \operatorname{ad} h}$ (see recent paper with V. Morinelli, CMP, 2021).

Euler elements in simple Lie algebras:

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ Cartan dec., $\mathfrak{a}\subseteq\mathfrak{p}$ maximal abelian with restricted root system

$$\Sigma = \Sigma(\mathfrak{g}, \mathfrak{a}) \supseteq \{\alpha_1, \dots, \alpha_n\}$$
 (simple roots)

and $\alpha_i(h_j) = \delta_{ij}$ (dual basis). Then, for every Euler element h, the adjoint orbit contains a unique h_j . Here is a list of those h_j which are Euler elements (Bourbaki numbering of simple roots):

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Red dots = simple roots α_j for which h_j is Euler, i.e., defines a 3-grading of the root system.

Compactly causal symmetric spaces

Let σ be an involutive automorphism of G, $H = (G_+)^{\sigma}$ and $M := G_+/H$ the corresponding symmetric space. Assume: $-\sigma(C_U) = C_U$ and $\sigma(h) = h$, h Euler element. Causal structure on M: $C_{gH} = g.C$, $C := C_U \cap g^{-\sigma} \subseteq g^{-\sigma} \cong T_{eH}(M)$ Tube domain of M: $T_M := \bigcup_{m \in M} \operatorname{Exp}_m(iC_m^0) = G. \operatorname{Exp}_{eH}(iC^0) \subseteq M_{\mathbb{C}}$ Modular flow on M: $\alpha_t^M(m) = \exp(th)m$, generated by $X_h^M \in \mathcal{V}(M)$, $M^{\alpha} \subseteq M$ its fixed points.

Three associated "wedge domains":

- $W_M^+(h) := \{m \in M : X_h^M(m) \in C_m^0\}$ (positivity domain of the modular flow, X_h^M "timelike").
- $W_M(h) := \bigcup_{m \in M^{\alpha}} \operatorname{Exp}_m(C^0_{m,+} + C^0_{m,-}), \ C_{m,\pm} := \pm C_m \cap T_m(M)_{\pm 1}$ (polar wedge domain).
- *W*^{KMS}_M(*h*): Elements *m* with exp(*i*(0, π)*h*)*m* ∈ *T*_M (the tube domain). (KMS wedge domain).

Theorem (Ólafsson, N., '21)

For any reductive compactly causal symmetric space $M = G/G^{\sigma}$ and any Euler element $h \in \mathfrak{g}^{\sigma}$, all three domains coincide:

$$\mathcal{W}^+_\mathcal{M}(h) = \mathcal{W}_\mathcal{M}(h) = \mathcal{W}^{\mathrm{KMS}}_\mathcal{M}(h).$$

The connected components of these subsets correspond to those of M^{α} .

Theorem (Existence of nice covariant nets; N./Ólafsson 2020/21)

Let (U, \mathcal{H}) be an antiunitary representation of the reductive group G with C_U pointed and generating and $\eta \in (\mathcal{H}^{-\infty})^H$ be an H-invariant cyclic distribution vector fixed by $J := U(\tau)$. Then

$$\mathsf{H}^{M}_{\mathbb{R}\eta}(\underbrace{\mathcal{W}_{M}(h)_{eH}}_{conn.cpt.}) = V_{\gamma} \quad for \quad \gamma(e^{t}) = \exp(th), \quad \gamma(-1) = \tau.$$

Ex's: (a) M = G, $W_M(h)_e = G_e^h \cdot \exp(C_+^0 + C_-^0)$ (Olshanski semigroup) (b) $M = \operatorname{AdS}^d \subseteq \mathbb{R}^{2,d-1}$ (anti-de Sitter space), $G = \operatorname{SO}_{2,d-1}(\mathbb{R})_e$, $H = \operatorname{SO}_{1,d-1}(\mathbb{R})_e$.

Karl-Hermann Neeb (FAU)

Irreducible compactly causal symmetric Lie algebras (\mathfrak{g}, τ) with Euler element in $\mathfrak{h} = \mathfrak{g}^{\tau}$:

Group type: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}$, \mathfrak{h} simple hermitian of tube type $\mathfrak{h} = \mathfrak{su}_{r,r}(\mathbb{C}), \mathfrak{sp}_{2r}(\mathbb{R}), \mathfrak{so}_{2,d}(\mathbb{R}), \mathfrak{so}^*(4r), \mathfrak{e}_{7(-25)}$

Cayley type spaces: $h \in \mathfrak{z}(\mathfrak{h})$ Euler element

g	$\mathfrak{su}_{r,r}(\mathbb{C})$	$\mathfrak{sp}_{2r}(\mathbb{R})$	$\mathfrak{so}_{2,d}(\mathbb{R}), d>2$	$\mathfrak{so}^*(4r)$	¢7(-25)
\mathfrak{h}	$\mathbb{R}\oplus\mathfrak{sl}_r(\mathbb{C})$	$\mathbb{R}\oplus\mathfrak{sl}_r(\mathbb{R})$	$\mathbb{R}\oplus\mathfrak{so}_{1,d-1}(\mathbb{R})$	$\mathbb{R}\oplus\mathfrak{sl}_r(\mathbb{H})$	$\mathbb{R}\oplus\mathfrak{e}_{6(-26)}$

Split types: $\tau \neq \tau_h$, $\operatorname{rk}_{\mathbb{R}}\mathfrak{h} = \operatorname{rk}_{\mathbb{R}}\mathfrak{g}$.

\mathfrak{g}	$\mathfrak{su}_{r,r}(\mathbb{C})$	$\mathfrak{so}_{2,p+q}(\mathbb{R})$	$\mathfrak{so}^*(4r)$	$\mathfrak{e}_{7(-25)}$
h	$\mathfrak{so}_{r,r}(\mathbb{R})$	$\mathfrak{so}_{1, p}(\mathbb{R}) \oplus \mathfrak{so}_{1, q}(\mathbb{R})$	$\mathfrak{so}_{2r}(\mathbb{C})$	$\mathfrak{sl}_4(\mathbb{H})$

Non-split types: $\tau \neq \tau_h$, $\operatorname{rk}_{\mathbb{R}}\mathfrak{h} = \frac{\operatorname{rk}_{\mathbb{R}}\mathfrak{g}}{2}$.

\mathfrak{g}	$\mathfrak{su}_{2s,2s}(\mathbb{C})$	$\mathfrak{sp}_{4s}(\mathbb{R})$	$\mathfrak{so}_{2,d}(\mathbb{R})$
h	$\mathfrak{u}_{s,s}(\mathbb{H})$	$\mathfrak{sp}_{2s}(\mathbb{C})$	$\mathfrak{so}_{1,d}(\mathbb{R})$

Perspectives 1: Non-compactly causal symmetric spaces

We have presented the part of the theory dealing with spectral conditions $C_U \neq \{0\}$ (related to ground states in Physics). There is a richer, more complicated (thermal) side of the theory, where the order on $U(G_+)V_{\gamma} \subseteq \text{Stand}(\mathcal{H})$ is trivial and the semigroup $S_{V_{\gamma}} = G_{V_{\gamma}}$ is a group.

Ex:
$$M = dS^d = \{(x_0, \mathbf{x}) \in \mathbb{R}^{1,d} : x_0^2 - \mathbf{x}^2 = -1\}$$
 (de Sitter space),
 $W_M^+(h) = \{(x_0, \mathbf{x}) \in M : x_1 > |x_0|\}.$

The natural class of spaces to consider here are non-compactly causal symmetric spaces. They carry a nice global order structure, but the wedge domains are more complicated (work in progress with G. Ólafsson).

Exs: $M = G_{\mathbb{C}}/G$, \mathfrak{g} simple hermitian Lie algebra.

Rem.: There is a duality $M \leftrightarrow M^c$ between compactly causal and non-compactly causal symmetric spaces

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q} \leftrightarrow \mathfrak{g}^{c} = \mathfrak{h} \oplus i\mathfrak{q}$ (multiplication of "coordinates by i")
- de Sitter \leftrightarrow anti-de Sitter,
- group type spaces $M = G \leftrightarrow M^c = G_{\mathbb{C}}/G$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Causal symmetric spaces of group type

The group case

Assume that \mathfrak{g} is reductive, (ρ, \mathcal{K}) is an irreducible antiunitary representation with C_{ρ} pointed and generating, the Euler element h and $\tau = \tau_h$ are as above and $C_{\pm} = \pm C_U \cap \mathfrak{g}_{\pm 1}(h)$.

Then we obtain an antiunitary rep. (U, \mathcal{H}_{ρ}) of $(G \times G) \rtimes \{\mathbf{1}, \tau \times \tau\}$ by

•
$$\mathcal{H}_{\rho} := \overline{\rho(\mathcal{C}_{c}^{\infty}(\mathcal{G},\mathbb{C}))} \subseteq B_{2}(\mathcal{K}).$$

•
$$U(g_1,g_2)A = \rho(g_1)A\rho(g_2), J(A) = J_{\mathcal{K}}AJ_{\mathcal{K}}.$$

• $W_G((h,h)) = G^h \exp(C^0_+ + C^0_-)$ is a semigroup.

• $\eta(A) := tr(A)$ is a distribution vector, fixed by Δ_G and J.

•
$$\mathsf{H}^{\mathcal{G}}_{\mathbb{R}\eta}(W_{\mathcal{G}}((h,h))_e) = V_{\gamma} \text{ for } \gamma(e^t) = (\exp th, \exp th), \gamma(-1) = \tau \times \tau.$$

 $G \cong (G \times G)/\Delta_G$ is a causal symmetric space: biinvariant cone field $(C_g)_{g \in G}$ determined by $C_e = C_U$. Conjugation action $\alpha_t(g) = \exp(th)g\exp(-th)$ on the semigroup S implements the modular group of the corresponding von Neumann algebras.

Conformal case

 \mathfrak{g} simple hermitian, $h \in \mathfrak{g}$ Euler element, $\operatorname{Ad}(\tau) = e^{\pi i \operatorname{ad} h}$ $A = \mathfrak{g}_1(h)$ simple euclidean Jordan algebra, M = G/P conformal completion of A, $P := G^h \exp(\mathfrak{g}_{-1}(h))$ (parabolic subgroup)

Theorem

Let (U, \mathcal{H}) be an irreducible antiunitary representation of G with C_U pointed and generating. Then there exists a finite dimensional P-invariant subspace $E \subseteq \mathcal{H}^{-\infty}$ such that

$$\mathsf{H}^{G/P}_{\mathsf{E}}(\exp(C^0_+)P) = V_\gamma \quad \textit{ for } \quad \gamma(e^t) = \exp(th), \quad \gamma(-1) = \tau.$$

 $C_+ \subseteq A$ is the positive cone (of squares) in A. **Affine context:** $A \rtimes G^h$ acting on A**Ex.:** Poincaré group in the conformal group $G = SO_{2,d}(\mathbb{R})_e$ of $\mathbb{R}^{1,d-1}$.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Perspectives 2: 3-graded Lie algebras with invariant cones

Non-reductive Lie groups

• Classification of triples (\mathfrak{g}, h, C) , where $h \in \mathfrak{g}$ is an Euler element and $C \subseteq \mathfrak{g}$ an $\operatorname{Ad}(G)$ -invariant pointed convex cone for which the cones $C_{\pm} := \pm C \cap \mathfrak{g}_{\pm 1}(h)$ generate $\mathfrak{g}_{\pm 1}(h)$ (Daniel Oeh, 2020).

A mixed example: (V, ω) a symplectic vector space, $\mathfrak{heis}(V, \omega) = \mathbb{R} \oplus V$ with $[(z, v), (z', v')] = (\omega(v, v'), 0)$ (Heisenberg algebra)

 $\mathfrak{g} = \mathfrak{heis}(V, \omega) \rtimes (\mathbb{R} \operatorname{id}_V \oplus \mathfrak{sp}(V, \omega)).$

Write $V = V_+ \oplus V_-$ for Lagrangian subspaces V_{\pm} . Then \mathfrak{g} is 3-graded:

$$\mathfrak{g}_0 \cong V_- \oplus \mathfrak{gl}(V_-) \oplus \mathbb{R} \operatorname{id}_V, \ \mathfrak{g}_1 = \mathbb{R} \oplus V_+ \oplus \mathfrak{sp}(V, \Omega)_1, \ \mathfrak{g}_{-1} = \mathfrak{sp}(V, \Omega)_{-1}.$$

- $\mathfrak{g}_1 = \mathsf{polynomial}$ functions of degree ≤ 2 on V_- .
- Construction of covariant nets on the corresponding groups for general Lie algebras (Daniel Oeh, 2021).

References

- Morinelli, V., and KHN, Covariant homogeneous nets of standard subspaces, Comm. Math. Phys., to appear; https://doi.org/10.1007/s00220-021-04046-6 arXiv:2010.07128
- KHN, Finite dimensional semigroups of unitary endomorphisms of standard subspaces, Representation Theory 25 (2021), 300–343; arxiv:1902.02266
- KHN, Semigroups in 3-graded Lie groups and endomorphisms of standard subspaces, Kyoto Math. J., to appear; arXiv:1912.13367
- KHN and G. Ólafsson, *Nets of standard subspaces on Lie groups*, Advances in Math. **384** (2021), 107715, arXiv:2006.09832
- KHN, and G. Ólafsson, Wedge domains in compactly causal symmetric spaces, in preparation
- Oeh, D., *Classification of 3-graded causal subalgebras of real simple Lie algebras*, Transformation Groups, 2021, https://doi.org/10.1007/s00031-020-09635-8; arXiv:2001.03125
- Oeh, D., Lie wedges of endomorphism semigroups of standard subspaces in admissible Lie algebras, arXiv:2007.13445