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Background on von Neumann algebras

H a complex Hilbert space, B(H) bounded operators on H
Commutant of M⊆ B(H): M′ = {a ∈ B(H) : (∀s ∈M)as = sa}
von Neumann algebra: M⊆ B(H) a ∗-subalgebra with M =M′′.
For a von Neumann algebra M⊆ B(H), a vector Ω ∈ H is called

cyclic if MΩ = H.
separating if M ∈M,MΩ = 0 implies M = 0.

Theorem (Tomita 1967, Takesaki 1970)

Any cyclic and separating vector Ω ∈ H for the von Neumann algebra M
determines a conjugation J (=antilinear isometry) and a positive
selfadjoint operator ∆ > 0 (modular operator) such that

(i) J∆J = ∆−1 (modular relation).

(ii) JMJ =M′; in particular M′ ∼=Mop (via a 7→ Ja∗J).

(iii) ∆itM∆−it =M for every t ∈ R (modular automorphism group)

From Ω to (∆, J): The operator S(MΩ) = M∗Ω, M ∈M, is densely
defined. Its closure has the polar decomposition S = J∆1/2.
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Von Neumann algebras in Quantum Field Theory (QFT)

In QFT one studies nets of von Neumann algebras (M(O))O⊆M in B(H).
Here M(O) corresponds to observables measurable in the “laboratory”
O ⊆ M, an open subset of the space-time manifold M.
Requirements:

O1 ⊆ O2 implies M(O1) ⊆M(O2) (Isotony)

O1 ⊆ O′2 implies M(O1) ⊆M(O2)′ (Locality)
(O′ = causal compl. = events that cannot exchange signals with O)

There is a unitary representation (U,H) of a space time symmetry
group G such that, for g ∈ G ,

U(g)M(O)U(g)−1 =M(gO) (Covariance)

Given a unit vector Ω ∈ H (vacuum state), we call O ⊆ M a test region if
Ω is cyclic and separating for M(O).
The Tomita-Takesaki-Thm. provides (∆O, JO) and

∆
−it/2π
O defines dynamics on M(O) (flow of time, Connes-Rovelli ’94).

How do we get such structures?
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Second quantization algebras (bosonic case)

For a complex Hilbert space H, consider the bosonic Fock space

F+(H) = ⊕̂∞n=0 Sn(H) with S0(H) = CΩ, S1(H) = H,

and the annihilation and creation operators

a(ξ)Ω = 0, a(ξ)(ξ1 ∨ · · · ∨ ξn) =
n∑

j=1

〈ξ, ξj〉ξ1 ∨ · · · ∨ ξ̂j ∨ · · · ∨ ξn

a∗(ξ)(ξ1 ∨ · · · ∨ ξn) = ξ ∨ ξ1 ∨ · · · ∨ ξn
satisfying the canonical commutation relations (CCR)

[a(f ), a∗(g)] = 〈f , g〉1, [a(f ), a(g)] = [a∗(f ), a∗(g)] = 0.

They lead to the unitary Weyl operators W (v) = e
i√
2
a∗(v)+a(v)

.
They satisfy the Weyl relations

W (v)W (w) = e−i Im〈v ,w〉/2W (v + w), v ,w ∈ H

and define an irreducible rep. of the Heisenberg group Heis(H) on F+(H).
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For each closed real subspace V ⊆ H, we obtain the von Neumann algebra

R(V ) := W (V )′′ = {W (v) : v ∈ V }′′ ⊆ B(F+(H)).

Properties (Araki, 1960s):

Isotony: R(V ) ⊆ R(W ) iff V ⊆W (⇒ R injective).

Duality: R(V )′ = R(V ′) for V ′ := {x ∈ H : Im〈x ,V 〉 = {0}}
symplectic complement ↔ commutant ↔ causal complement

Covariance: R(gV ) = U(g)R(V )U(g)−1 for g ∈ U(H),
U Fock rep. of U(H): U(g)(ξ1 ∨ · · · ∨ ξn) = gξ1 ∨ · · · ∨ gξn.

R(H) = B(F+(H)) (irred. of rep. of Heis(H) and Schur Lemma).

V is cyclic: V + iV = H iff Ω ∈ F+(H) is cyclic for R(V ).

V is separating: V ∩ iV = {0} iff Ω ∈ F+(H) is separating for R(V ).

V is standard (cyclic and separating) iff Ω ∈ F+(H) is cyclic and
separating for R(V ).
Then S(v + iw) := v − iw on V + iV is a closed operator on H, polar

decomposition S = JV ∆
1/2
V defines a conjugation and a positive

operator. (Modular structure lives on standard subspaces of H).
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Nets of real subspaces on homogeneous spaces

Let G be a Lie group, P ⊆ G a closed subgroup
M = G/P a homogeneous space and
(U,H) a unitary representation of G .

Definition

A net of real subspaces on M is a family V (O) ⊆ H of closed real
subspaces, O ⊆ M open, such that

O1 ⊆ O2 implies V (O1) ⊆ V (O2) (Isotony)

U(g)V (O) = V (gO) (Covariance)

Then second quantization leads to the net R(V (O)) of von Neumann
algebras on the Fock space F+(H) satisfying isotony and covariance.

Problems:

How to construct such nets containing standard subspaces?
Which domains O ⊆ M correspond to standard subspaces V (O)?

Geometric modular group: ∆
−it/2π
V (O) = U(exp th) for some h ∈ g?
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Antiunitary representations

Def: A graded group is a pair (G ,G+), where
G+ ⊆ G of index 2; G− := G \ G+.

Examples: (of graded groups, where G+ is the identity component):

R× ∼= R× Z2 (dilation group)

Antiunitary group AU(H) of all unitary and antiunitary operators on
H with AU(H)+ = U(H).

Projective (Möbius) group PGL2(R), acting on P1(R) ∼= S1

Proper Poincaré group Rd o SO1,d−1(R), acting on R1,d−1.

Typical structure: G ∼= G+ o {idG , τG}, τG involutive autom. of G+.

Def: An antiunitary representation (U,H) of a graded Lie group (G ,G+)
is a morphism U : G → AU(H) of graded groups, i.e., G+ = U−1(U(H)),
for which all orbit maps Uξ : G → H, g 7→ Ugξ are continuous.
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Brunetti–Guido–Longo construction

Let V ⊆ H standard (V + iV dense and V ∩ iV = {0}).

Then V = Fix(JV ∆
1/2
V ), JV conjugation, ∆V > 0, JV ∆V JV = ∆−1

V .

Encoding std subspaces in representations: For V ⊆ H standard,

UV : R× → AU(H), UV (et) := ∆
−it/2π
V , UV (−1) := JV

is an antiunitary representation of the graded group R×. We thus obtain a
bijection

Stand(H)→ Homgr(R×,AU(H))︸ ︷︷ ︸
antiunit. reps. of R×

, V 7→ UV .

Application: The Brunetti–Guido–Longo (BGL) construction
If (U,H) is an antiunitary representation of (G ,G+), we obtain a map

Homgr(R×,G ) 3 γ 7→ Vγ ∈ Stand(H)

determined uniquely by UVγ = U ◦ γ : R× → AU(H), i.e.,

Jγ = U(γ(−1)), ∆−it/2π
γ = U(γ(et)), Vγ = Fix(Jγ∆1/2

γ ).
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Nets of real subspaces from distribution vectors

Let U : G → AU(H) be an antiunitary representation.
H∞ ⊆ H (smooth vectors), Uξ : G → H, g 7→ U(g)ξ smooth.
H∞ carries a natural Fréchet topology, which defines a “rigging”

H∞ ↪→ H η−−→H−∞, η(ξ) = |ξ〉

H−∞ (distribution vectors) = continuous antilinear functionals on H∞.
Any test function ϕ ∈ C∞c (G ,C) defines a smearing operator

U−∞(ϕ) : H−∞ → H, η 7→
∫
G
ϕ(g) (η ◦ U(g)−1)︸ ︷︷ ︸

U−∞(g)η

dg ∈ H.

Let E ⊆ H−∞ be a real subspace. Then

HG
E (O) := U−∞(C∞c (O,R))E ⊆ H, O ⊆ G open

defines a G -covariant isotone net of closed real subspaces of H.
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Let M := G/P be a homogeneous space and qM : G → G/P, g 7→ gP be
the quotient map. Then

HM
E (O) := HG

E (q−1
M (O)) ⊆ H, O ⊆ M open

is a G -covariant net of closed real subspaces on M.
Problems:

How do the two constructions of real subspaces match?

For which data E,U,O is the subspace HM
E (O) ⊆ H standard?

For a graded homomorphism γ : R× → G ,
find domains Oγ ⊆ M with HM

E (Oγ) = Vγ .

Assumptions:

CU := {x ∈ g : − i∂U(x) ≥ 0}, ∂U(x) = d
dt

∣∣
t=0

U(exp tx)
(positive cone of U) is pointed (kerU discrete) and generating
(“positive energy representations”)

G = G+ o {1, τ}, τ involution on G (needed for BGL construction).

γ : R× → G , γ(−1) = τ , h = γ′(1) ∈ gτ (graded homo.).
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Which pairs (h, τ) are interesting?

For U : G → AU(H) and γ : R× → G as above, define
V := Vγ ⊆ H by the BGL construction: JV = U(τ), ∆V = e2πi ·∂U(h).
The order on the homogeneous space W(U, γ) := U(G+)Vγ ⊆ Stand(H)
is encoded in the closed subsemigroup

SV = {g ∈ G+ : U(g)V ⊆ V } ⊆ G+.

Important information on SV is contained in its Lie wedge

L(SV ) := {x ∈ g : (∀t ≥ 0) exp(tx) ∈ SV },
the infinitesimal generators of one-parameter subsemigroups.

Theorem (Structure Theorem for SV ), N. 2020, 2021)

(a) If L(SV ) has interior points, then h = γ′(1) ∈ g is an Euler element,
i.e., g = g1(h)⊕ g0(h)⊕ g−1(h) for gj(h) = {x : [h, x ] = jx}, and
Ad(γ(−1)) = Ad(τ) = eπi ad h (= diag(−1, 1,−1) w.r.t. grading).

(b) If h is Euler and τ = eπi ad h, then, for C± = ±CU ∩ g±1(h), we have
SV = GV exp(C+ + C−) = exp(C+)GV exp(C−) (Koufany decomp.).
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The preceding theorem points at the interesting homomorphisms
γ : R× → G = G+ o {1, τ}:
h = γ′(1) should be an Euler element and Ad(τ) = eπi ad h

(see recent paper with V. Morinelli, CMP, 2021).

Euler elements in simple Lie algebras:
g = k⊕ p Cartan dec., a ⊆ p maximal abelian with restricted root system

Σ = Σ(g, a) ⊇ {α1, . . . , αn} (simple roots)

and αi (hj) = δij (dual basis). Then, for every Euler element h, the adjoint
orbit contains a unique hj . Here is a list of those hj which are Euler
elements (Bourbaki numbering of simple roots):

An : h1, . . . , hn, Bn : h1, Cn : hn, Dn : h1, hn−1, hn,

E6 : h1, h6, E7 : h7; none for BCn,E8,F4,G2.
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Red dots = simple roots αj for which hj is Euler, i.e., defines a 3-grading
of the root system.

An, n ≥ 1 : • • • · · · • •
Bn, n ≥ 2, : • ◦ ◦ · · · ◦ 〉◦
Cn, n ≥ 3, : ◦ ◦ ◦ · · · ◦〈 •
Dn, n ≥ 4, : • ◦ ◦ · · · ◦ ◦

•

•

E6 : • ◦ ◦

◦

◦ •

E7 : ◦ ◦ ◦

◦

◦ ◦ •
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Compactly causal symmetric spaces

Let σ be an involutive automorphism of G , H = (G+)σ and
M := G+/H the corresponding symmetric space.
Assume: −σ(CU) = CU and σ(h) = h, h Euler element.

Causal structure on M: CgH = g .C , C := CU ∩ g−σ ⊆ g−σ ∼= TeH(M)

Tube domain of M: TM :=
⋃

m∈M Expm(iC 0
m) = G .ExpeH(iC 0) ⊆ MC

Modular flow on M: αM
t (m) = exp(th)m, generated by XM

h ∈ V(M),
Mα ⊆ M its fixed points.

Three associated “wedge domains”:

W+
M (h) := {m ∈ M : XM

h (m) ∈ C 0
m}

(positivity domain of the modular flow, XM
h “timelike”).

WM(h) :=
⋃

m∈Mα Expm(C 0
m,+ + C 0

m,−), Cm,± := ±Cm ∩ Tm(M)±1

(polar wedge domain).

WKMS
M (h): Elements m with exp(i(0, π)h)m ∈ TM (the tube domain).

(KMS wedge domain).
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Theorem (Ólafsson, N., ’21)

For any reductive compactly causal symmetric space M = G/Gσ and any
Euler element h ∈ gσ, all three domains coincide:

W+
M (h) = WM(h) = WKMS

M (h).

The connected components of these subsets correspond to those of Mα.

Theorem (Existence of nice covariant nets; N./Ólafsson 2020/21)

Let (U,H) be an antiunitary representation of the reductive group G with
CU pointed and generating and η ∈ (H−∞)H be an H-invariant cyclic
distribution vector fixed by J := U(τ). Then

HM
Rη(WM(h)eH︸ ︷︷ ︸

conn.cpt.

) = Vγ for γ(et) = exp(th), γ(−1) = τ.

Ex’s: (a) M = G , WM(h)e = Gh
e · exp(C 0

+ + C 0
−) (Olshanski semigroup)

(b) M = AdSd ⊆ R2,d−1 (anti-de Sitter space),
G = SO2,d−1(R)e , H = SO1,d−1(R)e .
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Irreducible compactly causal symmetric Lie algebras (g, τ)
with Euler element in h = gτ :

Group type: g = h⊕ h, h simple hermitian of tube type
h = sur ,r (C), sp2r (R), so2,d(R), so∗(4r), e7(−25)

Cayley type spaces: h ∈ z(h) Euler element

g sur ,r (C) sp2r (R) so2,d(R), d > 2 so∗(4r) e7(−25)

h R⊕ slr (C) R⊕ slr (R) R⊕ so1,d−1(R) R⊕ slr (H) R⊕ e6(−26)

Split types: τ 6= τh, rkRh = rkRg.

g sur ,r (C) so2,p+q(R) so∗(4r) e7(−25)

h sor ,r (R) so1,p(R)⊕ so1,q(R) so2r (C) sl4(H)

Non-split types: τ 6= τh, rkRh = rkRg
2 .

g su2s,2s(C) sp4s(R) so2,d(R)

h us,s(H) sp2s(C) so1,d(R)
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Perspectives 1: Non-compactly causal symmetric spaces

We have presented the part of the theory dealing with spectral conditions
CU 6= {0} (related to ground states in Physics). There is a richer, more
complicated (thermal) side of the theory, where the order on
U(G+)Vγ ⊆ Stand(H) is trivial and the semigroup SVγ = GVγ is a group.

Ex: M = dSd = {(x0, x) ∈ R1,d : x2
0 − x2 = −1} (de Sitter space),

W+
M (h) = {(x0, x) ∈ M : x1 > |x0|}.

The natural class of spaces to consider here are non-compactly causal
symmetric spaces. They carry a nice global order structure, but the wedge
domains are more complicated (work in progress with G. Ólafsson).

Exs: M = GC/G , g simple hermitian Lie algebra.

Rem.: There is a duality M ↔ Mc between compactly causal and
non-compactly causal symmetric spaces
• g = h⊕ q↔ gc = h⊕ iq (multiplication of “coordinates by i”)
• de Sitter ↔ anti-de Sitter,
• group type spaces M = G ↔ Mc = GC/G .
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Causal symmetric spaces of group type

The group case
Assume that g is reductive, (ρ,K) is an irreducible antiunitary
representation with Cρ pointed and generating,
the Euler element h and τ = τh are as above and C± = ±CU ∩ g±1(h).

Then we obtain an antiunitary rep. (U,Hρ) of (G × G ) o {1, τ × τ} by

Hρ := ρ(C∞c (G ,C)) ⊆ B2(K).

U(g1, g2)A = ρ(g1)Aρ(g2), J(A) = JKAJK.

WG ((h, h)) = Gh exp(C 0
+ + C 0

−) is a semigroup.

η(A) := tr(A) is a distribution vector, fixed by ∆G and J.

HG
Rη(WG ((h, h))e) = Vγ for γ(et) = (exp th, exp th), γ(−1) = τ × τ .

G ∼= (G × G )/∆G is a causal symmetric space:
biinvariant cone field (Cg )g∈G determined by Ce = CU .
Conjugation action αt(g) = exp(th)g exp(−th) on the semigroup S
implements the modular group of the corresponding von Neumann
algebras.
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Conformal case

g simple hermitian,
h ∈ g Euler element, Ad(τ) = eπi ad h

A = g1(h) simple euclidean Jordan algebra,
M = G/P conformal completion of A,
P := Gh exp(g−1(h)) (parabolic subgroup)

Theorem

Let (U,H) be an irreducible antiunitary representation of G with CU

pointed and generating. Then there exists a finite dimensional P-invariant
subspace E ⊆ H−∞ such that

H
G/P
E (exp(C 0

+)P) = Vγ for γ(et) = exp(th), γ(−1) = τ.

C+ ⊆ A is the positive cone (of squares) in A.
Affine context: Ao Gh acting on A
Ex.: Poincaré group in the conformal group G = SO2,d(R)e of R1,d−1.
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Perspectives 2: 3-graded Lie algebras with invariant cones

Non-reductive Lie groups

Classification of triples (g, h,C ), where h ∈ g is an Euler element and
C ⊆ g an Ad(G )-invariant pointed convex cone for which the cones
C± := ±C ∩ g±1(h) generate g±1(h) (Daniel Oeh, 2020).

A mixed example: (V , ω) a symplectic vector space,
heis(V , ω) = R⊕ V with [(z , v), (z ′, v ′)] = (ω(v , v ′), 0)
(Heisenberg algebra)

g = heis(V , ω) o (R idV ⊕ sp(V , ω)).

Write V = V+ ⊕ V− for Lagrangian subspaces V±.
Then g is 3-graded:

g0
∼= V−⊕gl(V−)⊕R idV , g1 = R⊕V+⊕sp(V ,Ω)1, g−1 = sp(V ,Ω)−1.

g1 = polynomial functions of degree ≤ 2 on V−.

Construction of covariant nets on the corresponding groups for
general Lie algebras (Daniel Oeh, 2021).
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