Renormalization in Quantum Field Theory (after R. Borcherds)

Estanislao HERSCOVICH
 Université Grenoble Alpes

Afternoon Representation Theory Institut Élie Cartan de Lorraine, Metz

December 17th, 2020

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed; Ω This allows to define spacelike-separated subsets of M !

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$; \int A comm. k-algebra!

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a (super) vector bundle over M ;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right) ; \Omega$ A proj. f.g. A-module! [Serre-Swan]

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$, where $\operatorname{Vol}(M)=\Lambda^{\text {top }} T^{*} M \otimes \mathfrak{o}_{M}$ and $* \in\{, c\}$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$; Ω A proj. A-module!
[Finney-Rotman]

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X\left(=\oplus_{n=0}^{\infty} X^{\otimes_{A} n} / \sim\right)$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$; "Composite fields or Lagrangians"

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$; "Lagrangians densities"

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;
3. $S \mathscr{L} *$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;
3. $S \mathscr{L}_{*}\left(=\oplus_{n=0}^{\infty} \mathscr{L}_{*}^{\tilde{\otimes}_{\beta} n} / \sim\right)$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;
3. $S \mathscr{L}_{*} ; \Omega$ "Nonlocal actions (of cpt. supp. if $*=c$)"

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;
3. $S \mathscr{L}_{*} ; \backsim$ The mult. gives the time ordered product!

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;
3. $S \mathscr{L}_{*}$;
4. $T_{0}\left(S \mathscr{L}_{c}\right)$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;
3. $S \mathscr{L} * ;$
4. $T_{0}\left(S \mathscr{L}_{c}\right)\left(=\oplus_{m=0}^{\infty}\left(S \mathscr{L}_{c}\right)^{\tilde{\otimes}_{\beta} 2 m}\right)$;

Basic data

From:

(i) $k=\mathbb{R}$ or \mathbb{C};
(ii) M is a smooth manifold, provided with a causal order $\preceq \subseteq M \times M$, i.e. partial order that is closed;
(iii) $A=C^{\infty}(M, k)$;
(iv) E is a vector bundle over M ; so for fixed $i \in \mathbb{N}$ we set $X=\Gamma\left(J^{i} E\right)$;
(v) $V_{*}=\Gamma_{*}(\operatorname{Vol}(M))$ and $* \in\{, c\}$;
we consider:

1. $S_{A} X$;
2. $\mathscr{L}_{*}=V_{*} \otimes_{A} S_{A} X$;
3. $S \mathscr{L}_{*}$;
4. $T_{0}\left(S \mathscr{L}_{c}\right) ; \Omega$ The mult. gives the composition product!

Basic definitions I: Propagators

A propagator Δ is a separately continuous bilinear map

$$
\Delta: \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \times \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \rightarrow \mathbb{C}
$$

Basic definitions I: Propagators

A propagator Δ is a separately continuous bilinear map

$$
\Delta: \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \times \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \rightarrow \mathbb{C}
$$

or, equivalently, an element of

$$
\operatorname{Hom}_{A \otimes_{\beta} A}\left(X \otimes_{\beta} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right)
$$

Basic definitions I: Propagators

A propagator Δ is a separately continuous bilinear map

$$
\Delta: \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \times \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \rightarrow \mathbb{C}
$$

or, equivalently, an element of

$$
\operatorname{Hom}_{A \otimes_{\beta} A}(X \otimes_{\beta} X, \underbrace{V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}})
$$

Space of distributions $\mathscr{D}^{\prime}(M \times M)$

Basic definitions I: Propagators

A propagator Δ is a separately continuous bilinear map

$$
\Delta: \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \times \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \rightarrow \mathbb{C}
$$

or, equivalently, an element of
$\operatorname{Hom}_{A \otimes_{\beta} A}\left(X \otimes_{\beta} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right) \simeq \mathscr{D}^{\prime}\left(M \times M,\left(J^{i} E \boxtimes J^{i} E\right)^{*}\right)$.

Basic definitions I: Propagators

A propagator Δ is a separately continuous bilinear map

$$
\Delta: \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \times \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \rightarrow \mathbb{C}
$$

or, equivalently, an element of

$$
\operatorname{Hom}_{A \otimes_{\beta} A}\left(X \otimes_{\beta} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right) \simeq \mathscr{D}^{\prime}\left(M \times M,\left(J^{i} E \boxtimes J^{i} E\right)^{*}\right) .
$$

A propagator Δ is precut w.r.t. to proper closed convex cones $\mathscr{P}_{p} \subseteq T_{p}^{*} M(p \in M)$, if (roughly)

Basic definitions I: Propagators

A propagator Δ is a separately continuous bilinear map

$$
\Delta: \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \times \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \rightarrow \mathbb{C}
$$

or, equivalently, an element of

$$
\operatorname{Hom}_{A \otimes_{\beta} A}\left(X \otimes_{\beta} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right) \simeq \mathscr{D}^{\prime}\left(M \times M,\left(J^{i} E \boxtimes J^{i} E\right)^{*}\right) .
$$

A propagator Δ is precut w.r.t. to proper closed convex cones $\mathscr{P}_{p} \subseteq T_{p}^{*} M(p \in M)$, if
(i) if $(v, w) \in \mathrm{WF}_{(p, q)}(\Delta)$, for any $(p, q) \in M \times M$, then $-v \in \mathscr{P}_{p}$ and $w \in \mathscr{P}_{q}$;

Basic definitions I: Propagators

A propagator Δ is a separately continuous bilinear map

$$
\Delta: \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \times \Gamma_{c}\left(\operatorname{Vol}(M) \otimes J^{i} E\right) \rightarrow \mathbb{C}
$$

or, equivalently, an element of
$\operatorname{Hom}_{A \otimes_{\beta} A}\left(X \otimes_{\beta} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right) \simeq \mathscr{D}^{\prime}\left(M \times M,\left(J^{i} E \boxtimes J^{i} E\right)^{*}\right)$.
A propagator Δ is precut w.r.t. to proper closed convex cones $\mathscr{P}_{p} \subseteq T_{p}^{*} M(p \in M)$, if
(i) if $(v, w) \in \mathrm{WF}_{(p, q)}(\Delta)$, for any $(p, q) \in M \times M$, then $-v \in \mathscr{P}_{p}$ and $w \in \mathscr{P}_{q}$;
(ii) if $(v, w) \in \mathrm{WF}_{(p, p)}(\Delta)$, for any $p \in M$, then $w=-v$.

Fact 1.

Any precut propagator Δ induces a unique map

$$
\tilde{\Delta} \in \operatorname{Hom}_{A \otimes_{\beta} A}\left(S_{A} X \otimes_{\beta} S_{A} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right)
$$

such that for all $\sigma_{1}, \ldots, \sigma_{n}, \tau_{1}, \ldots, \tau_{m} \in X$ and $n, m \in \mathbb{N}$

$$
\begin{gathered}
\tilde{\Delta}\left(1_{M}, 1_{M}\right)=1_{M^{2}}, \quad \tilde{\Delta}\left(1_{M}, \sigma_{1} \ldots \sigma_{n}\right)=0 \\
\tilde{\Delta}\left(\sigma_{1} \ldots \sigma_{n}, \tau_{1} \ldots \tau_{m}\right)=\delta_{n, m} \sum_{\varsigma \in \mathbb{S}_{n}} \Delta\left(\sigma_{1}, \tau_{\varsigma(1)}\right) \ldots \Delta\left(\sigma_{n}, \tau_{\varsigma(n)}\right) .
\end{gathered}
$$

Fact 1.

Any precut propagator Δ induces a unique map

$$
\tilde{\Delta} \in \operatorname{Hom}_{A \otimes_{\beta} A}\left(S_{A} X \otimes_{\beta} S_{A} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right)
$$

such that for all $\sigma_{1}, \ldots, \sigma_{n}, \tau_{1}, \ldots, \tau_{m} \in X$ and $n, m \in \mathbb{N}$

$$
\begin{gathered}
\tilde{\Delta}\left(1_{M}, 1_{M}\right)=1_{M^{2}}, \quad \tilde{\Delta}\left(1_{M}, \sigma_{1} \ldots \sigma_{n}\right)=0 \\
\tilde{\Delta}\left(\sigma_{1} \ldots \sigma_{n}, \tau_{1} \ldots \tau_{m}\right)=\delta_{n, m} \sum_{\varsigma \in \mathbb{S}_{n}} \Delta\left(\sigma_{1}, \tau_{\varsigma(1)}\right) \ldots \Delta\left(\sigma_{n}, \tau_{\varsigma(n)}\right) .
\end{gathered}
$$

Borcherds (roughly) claims that $\tilde{\Delta}$ extends to a (unique) Laplace pairing
$\hat{\Delta} \in \operatorname{Hom}_{\Sigma A \otimes_{\beta} \Sigma A}\left(S\left(S_{A} X\right) \otimes_{\beta} S\left(S_{A} X\right), \Sigma V_{c}^{\prime} \tilde{\otimes}_{\beta} \Sigma V_{c}^{\prime}\right)$.

Fact 1.

Any precut propagator Δ induces a unique map

$$
\tilde{\Delta} \in \operatorname{Hom}_{A \otimes_{\beta} A}\left(S_{A} X \otimes_{\beta} S_{A} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right)
$$

such that for all $\sigma_{1}, \ldots, \sigma_{n}, \tau_{1}, \ldots, \tau_{m} \in X$ and $n, m \in \mathbb{N}$

$$
\begin{gathered}
\tilde{\Delta}\left(1_{M}, 1_{M}\right)=1_{M^{2}}, \quad \tilde{\Delta}\left(1_{M}, \sigma_{1} \ldots \sigma_{n}\right)=0 \\
\tilde{\Delta}\left(\sigma_{1} \ldots \sigma_{n}, \tau_{1} \ldots \tau_{m}\right)=\delta_{n, m} \sum_{\varsigma \in \mathbb{S}_{n}} \Delta\left(\sigma_{1}, \tau_{\varsigma(1)}\right) \ldots \Delta\left(\sigma_{n}, \tau_{\varsigma(n)}\right) .
\end{gathered}
$$

Borcherds (roughly) claims that $\tilde{\Delta}$ extends to a (unique) Laplace pairing

$$
\begin{gathered}
\hat{\Delta} \in \operatorname{Hom}_{\Sigma A \otimes_{\beta} \Sigma A}(\underbrace{S\left(S_{A} X\right)}_{\uparrow} \otimes_{\beta} S\left(S_{A} X\right), \underbrace{\Sigma V_{c}^{\prime} \tilde{\otimes}_{\beta} \Sigma V_{c}^{\prime}}_{\uparrow}) . \\
A n \text { "algebra"?? }
\end{gathered}
$$

Fact 1.

Any precut propagator Δ induces a unique map

$$
\tilde{\Delta} \in \operatorname{Hom}_{A \otimes_{\beta} A}\left(S_{A} X \otimes_{\beta} S_{A} X, V_{c}^{\prime} \tilde{\otimes}_{\beta} V_{c}^{\prime}\right)
$$

such that for all $\sigma_{1}, \ldots, \sigma_{n}, \tau_{1}, \ldots, \tau_{m} \in X$ and $n, m \in \mathbb{N}$

$$
\begin{gathered}
\tilde{\Delta}\left(1_{M}, 1_{M}\right)=1_{M^{2}}, \quad \tilde{\Delta}\left(1_{M}, \sigma_{1} \ldots \sigma_{n}\right)=0 \\
\tilde{\Delta}\left(\sigma_{1} \ldots \sigma_{n}, \tau_{1} \ldots \tau_{m}\right)=\delta_{n, m} \sum_{\varsigma \in \mathbb{S}_{n}} \Delta\left(\sigma_{1}, \tau_{\varsigma(1)}\right) \ldots \Delta\left(\sigma_{n}, \tau_{\varsigma(n)}\right) .
\end{gathered}
$$

Borcherds (roughly) claims that $\tilde{\Delta}$ extends to a (unique) Laplace pairing

$$
\hat{\Delta} \in \operatorname{Hom}_{\Sigma A \otimes_{\beta} \Sigma A}\left(S\left(S_{A} X\right) \otimes_{\beta} S\left(S_{A} X\right), \Sigma V_{c}^{\prime} \tilde{\otimes}_{\beta} \Sigma V_{c}^{\prime}\right)
$$

Borcherds then uses this map in his definition of Feynman measure (FM) associated with Δ, which is a cont. linear map $\omega: S \mathscr{L}_{c} \rightarrow \mathbb{C}$ satisfying $\omega(1)=1$, and a recursiveness property involving $\hat{\Delta}$.

The (first) definition of a Laplace pairing

Given a symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$, a unitary and counitary bialgebra $\left(C, \mu_{C}, \Delta_{C}, 1_{C}, \varepsilon_{C}\right)$ in \mathscr{C} and an unitary algebra $\left(A, \mu_{A}, 1_{A}\right)$, a Laplace pairing is a map $\langle\rangle:, C \otimes C \rightarrow A$ in \mathscr{C} such that

$$
\begin{gathered}
\left\langle c c^{\prime}, d\right\rangle=\left\langle c, d_{(1)}\right\rangle \cdot\left\langle c^{\prime}, d_{(2)}\right\rangle, \quad\left\langle c, d d^{\prime}\right\rangle=\left\langle c_{(1)}, d\right\rangle \cdot\left\langle c_{(2)}, d^{\prime}\right\rangle, \\
\left\langle 1_{C}, c\right\rangle=\left\langle c, 1_{C}\right\rangle=\varepsilon_{C}(c) 1_{A},
\end{gathered}
$$

for all $c, c^{\prime}, d, d^{\prime} \in C$, where $\Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ and $\Delta_{C}(d)=d_{(1)} \otimes d_{(2)}$ denotes the coproduct of C.

The (first) definition of a Laplace pairing

Given a symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$, a unitary and counitary bialgebra $\left(C, \mu_{C}, \Delta_{C}, 1_{C}, \varepsilon_{C}\right)$ in \mathscr{C} and an unitary algebra $\left(A, \mu_{A}, 1_{A}\right)$, a Laplace pairing is a map $\langle\rangle:, C \otimes C \rightarrow A$ in \mathscr{C} such that

$$
\begin{gathered}
\left\langle c c^{\prime}, d\right\rangle=\left\langle c, d_{(1)}\right\rangle \cdot\left\langle c^{\prime}, d_{(2)}\right\rangle, \quad\left\langle c, d d^{\prime}\right\rangle=\left\langle c_{(1)}, d\right\rangle \cdot\left\langle c_{(2)}, d^{\prime}\right\rangle \\
\left\langle 1_{C}, c\right\rangle=\left\langle c, 1_{C}\right\rangle=\varepsilon_{C}(c) 1_{A},
\end{gathered}
$$

for all $c, c^{\prime}, d, d^{\prime} \in C$, where $\Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ and $\Delta_{C}(d)=d_{(1)} \otimes d_{(2)}$ denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of Borcherds?

The (first) definition of a Laplace pairing

Given a symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$, a unitary and counitary bialgebra $\left(C, \mu_{C}, \Delta_{C}, 1_{C}, \varepsilon_{C}\right)$ in \mathscr{C} and an unitary algebra $\left(A, \mu_{A}, 1_{A}\right)$, a Laplace pairing is a map $\langle\rangle:, C \otimes C \rightarrow A$ in \mathscr{C} such that

$$
\begin{gathered}
\left\langle c c^{\prime}, d\right\rangle=\left\langle c, d_{(1)}\right\rangle \cdot\left\langle c^{\prime}, d_{(2)}\right\rangle, \quad\left\langle c, d d^{\prime}\right\rangle=\left\langle c_{(1)}, d\right\rangle \cdot\left\langle c_{(2)}, d^{\prime}\right\rangle, \\
\left\langle 1_{C}, c\right\rangle=\left\langle c, 1_{C}\right\rangle=\varepsilon_{C}(c) 1_{A},
\end{gathered}
$$

for all $c, c^{\prime}, d, d^{\prime} \in C$, where $\Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ and $\Delta_{C}(d)=d_{(1)} \otimes d_{(2)}$ denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of Borcherds? N None!

The (first) definition of a Laplace pairing

Given a symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$, a unitary and counitary bialgebra $\left(C, \mu_{C}, \Delta_{C}, 1_{C}, \varepsilon_{C}\right)$ in \mathscr{C} and an unitary algebra $\left(A, \mu_{A}, 1_{A}\right)$, a Laplace pairing is a map $\langle\rangle:, C \otimes C \rightarrow A$ in \mathscr{C} such that

$$
\begin{gathered}
\left\langle c c^{\prime}, d\right\rangle=\left\langle c, d_{(1)}\right\rangle \cdot\left\langle c^{\prime}, d_{(2)}\right\rangle, \quad\left\langle c, d d^{\prime}\right\rangle=\left\langle c_{(1)}, d\right\rangle \cdot\left\langle c_{(2)}, d^{\prime}\right\rangle, \\
\left\langle 1_{C}, c\right\rangle=\left\langle c, 1_{C}\right\rangle=\varepsilon_{C}(c) 1_{A},
\end{gathered}
$$

for all $c, c^{\prime}, d, d^{\prime} \in C$, where $\Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ and $\Delta_{C}(d)=d_{(1)} \otimes d_{(2)}$ denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of Borcherds? N None!
Reasons:

The (first) definition of a Laplace pairing

Given a symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$, a unitary and counitary bialgebra $\left(C, \mu_{C}, \Delta_{C}, 1_{C}, \varepsilon_{C}\right)$ in \mathscr{C} and an unitary algebra $\left(A, \mu_{A}, 1_{A}\right)$, a Laplace pairing is a map $\langle\rangle:, C \otimes C \rightarrow A$ in \mathscr{C} such that

$$
\begin{gathered}
\left\langle c c^{\prime}, d\right\rangle=\left\langle c, d_{(1)}\right\rangle \cdot\left\langle c^{\prime}, d_{(2)}\right\rangle, \quad\left\langle c, d d^{\prime}\right\rangle=\left\langle c_{(1)}, d\right\rangle \cdot\left\langle c_{(2)}, d^{\prime}\right\rangle, \\
\left\langle 1_{C}, c\right\rangle=\left\langle c, 1_{C}\right\rangle=\varepsilon_{C}(c) 1_{A},
\end{gathered}
$$

for all $c, c^{\prime}, d, d^{\prime} \in C$, where $\Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ and $\Delta_{C}(d)=d_{(1)} \otimes d_{(2)}$ denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of Borcherds? N None!
Reasons:
(1) $S\left(S_{A} \mathscr{L}_{c}\right)$ has a k-linear product, i.e. over \otimes;

The (first) definition of a Laplace pairing

Given a symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$, a unitary and counitary bialgebra $\left(C, \mu_{C}, \Delta_{C}, 1_{C}, \varepsilon_{C}\right)$ in \mathscr{C} and an unitary algebra $\left(A, \mu_{A}, 1_{A}\right)$, a Laplace pairing is a map $\langle\rangle:, C \otimes C \rightarrow A$ in \mathscr{C} such that

$$
\begin{gathered}
\left\langle c c^{\prime}, d\right\rangle=\left\langle c, d_{(1)}\right\rangle \cdot\left\langle c^{\prime}, d_{(2)}\right\rangle, \quad\left\langle c, d d^{\prime}\right\rangle=\left\langle c_{(1)}, d\right\rangle \cdot\left\langle c_{(2)}, d^{\prime}\right\rangle, \\
\left\langle 1_{C}, c\right\rangle=\left\langle c, 1_{C}\right\rangle=\varepsilon_{C}(c) 1_{A},
\end{gathered}
$$

for all $c, c^{\prime}, d, d^{\prime} \in C$, where $\Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ and $\Delta_{C}(d)=d_{(1)} \otimes d_{(2)}$ denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of Borcherds? N None!
Reasons:
(1) $S\left(S_{A} \mathscr{L}_{c}\right)$ has a k-linear product, i.e. over \otimes;
(2) $S\left(S_{A} \mathscr{L}_{C}\right)$ should have a priori a coproduct with respect to $\otimes_{\Sigma A}$ (or something similar).

The (first) definition of a Laplace pairing

Given a symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$, a unitary and counitary bialgebra $\left(C, \mu_{C}, \Delta_{C}, 1_{C}, \varepsilon_{C}\right)$ in \mathscr{C} and an unitary algebra $\left(A, \mu_{A}, 1_{A}\right)$, a Laplace pairing is a map $\langle\rangle:, C \otimes C \rightarrow A$ in \mathscr{C} such that

$$
\begin{gathered}
\left\langle c c^{\prime}, d\right\rangle=\left\langle c, d_{(1)}\right\rangle \cdot\left\langle c^{\prime}, d_{(2)}\right\rangle, \quad\left\langle c, d d^{\prime}\right\rangle=\left\langle c_{(1)}, d\right\rangle \cdot\left\langle c_{(2)}, d^{\prime}\right\rangle, \\
\left\langle 1_{C}, c\right\rangle=\left\langle c, 1_{C}\right\rangle=\varepsilon_{C}(c) 1_{A},
\end{gathered}
$$

for all $c, c^{\prime}, d, d^{\prime} \in C$, where $\Delta_{C}(c)=c_{(1)} \otimes c_{(2)}$ and $\Delta_{C}(d)=d_{(1)} \otimes d_{(2)}$ denotes the coproduct of C.
Questions: What is the sym. monoidal category in the claim of Borcherds? N None!
Reasons:
(1) $S\left(S_{A} \mathscr{L}_{C}\right)$ has a k-linear product, i.e. over \otimes;
(2) $S\left(S_{A} \mathscr{L}_{c}\right)$ should have a priori a coproduct with respect to $\otimes_{\Sigma A}$ (or something similar). \sim^{\sim} It doesn't have!

The solution: 2-monoidal categories

A double monoidal category is a tuple $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$, where $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$ and $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ are monoidal categories.

The solution: 2-monoidal categories

A double monoidal category is a tuple $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$, where $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$ and $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ are monoidal categories.
A 2-monoidal category [Aguiar-Mahajan, '10; Batanin-Markl, '12; Street, '12] is a double monoidal category provided with

$$
\operatorname{sh}_{A, B, C, D}:\left(A \otimes_{\mathscr{C}} B\right) \boxtimes_{\mathscr{C}}\left(C \otimes_{\mathscr{C}} D\right) \rightarrow\left(A \boxtimes_{\mathscr{C}} C\right) \otimes_{\mathscr{C}}\left(B \boxtimes_{\mathscr{C}} D\right)
$$

in \mathscr{C} and three morphisms

$$
\mu_{\boxtimes}: I_{\otimes} \boxtimes_{\mathscr{C}} I_{\otimes} \rightarrow I_{\otimes}, \quad \Delta_{\otimes}: I_{\boxtimes} \rightarrow I_{\boxtimes} \otimes_{\mathscr{C}} I_{\boxtimes} \quad \text { and } \quad v: I_{\boxtimes} \rightarrow I_{\otimes},
$$ in \mathscr{C} satisfying several "natural" compatibility conditions.

The solution: 2-monoidal categories

A double monoidal category is a tuple $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$, where $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$ and $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ are monoidal categories.
A 2-monoidal category [Aguiar-Mahajan, '10; Batanin-Markl, '12; Street, '12] is a double monoidal category provided with

$$
\operatorname{sh}_{A, B, C, D}:\left(A \otimes_{\mathscr{C}} B\right) \boxtimes_{\mathscr{C}}\left(C \otimes_{\mathscr{C}} D\right) \rightarrow\left(A \boxtimes_{\mathscr{C}} C\right) \otimes_{\mathscr{C}}\left(B \boxtimes_{\mathscr{C}} D\right)
$$

in \mathscr{C} and three morphisms
$\mu_{\boxtimes}: I_{\otimes} \boxtimes_{\mathscr{C}} I_{\otimes} \rightarrow I_{\otimes}, \quad \Delta_{\otimes}: I_{\boxtimes} \rightarrow I_{\boxtimes} \otimes_{\mathscr{C}} I_{\boxtimes} \quad$ and $\quad v: I_{\boxtimes} \rightarrow I_{\otimes}$, in \mathscr{C} satisfying several "natural" compatibility conditions. \sim It means that it is a pseudomonoid in $\ell($ Cat $)$.

The solution: 2-monoidal categories

A double monoidal category is a tuple $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$, where $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$ and $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ are monoidal categories.
A 2-monoidal category [Aguiar-Mahajan, '10; Batanin-Markl, '12; Street, '12] is a double monoidal category provided with

$$
\operatorname{sh}_{A, B, C, D}:\left(A \otimes_{\mathscr{C}} B\right) \boxtimes_{\mathscr{C}}\left(C \otimes_{\mathscr{C}} D\right) \rightarrow\left(A \boxtimes_{\mathscr{C}} C\right) \otimes_{\mathscr{C}}\left(B \boxtimes_{\mathscr{C}} D\right)
$$

in \mathscr{C} and three morphisms

$$
\mu_{\boxtimes}: I_{\otimes} \boxtimes_{\mathscr{C}} I_{\otimes} \rightarrow I_{\otimes}, \quad \Delta_{\otimes}: I_{\boxtimes} \rightarrow I_{\boxtimes} \otimes_{\mathscr{C}} I_{\boxtimes} \quad \text { and } \quad v: I_{\boxtimes} \rightarrow I_{\otimes},
$$ in \mathscr{C} satisfying several "natural" compatibility conditions. The 2-monoidal category is symmetric if $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$ has a symmetric twist τ compatible with sh and $\left(I_{\boxtimes}, \Delta_{\otimes}, v\right)$.

The solution: 2-monoidal categories

A double monoidal category is a tuple $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$, where $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$ and $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ are monoidal categories.
A 2-monoidal category [Aguiar-Mahajan, '10; Batanin-Markl, '12; Street, '12] is a double monoidal category provided with

$$
\operatorname{sh}_{A, B, C, D}:\left(A \otimes_{\mathscr{C}} B\right) \boxtimes_{\mathscr{C}}\left(C \otimes_{\mathscr{C}} D\right) \rightarrow\left(A \boxtimes_{\mathscr{C}} C\right) \otimes_{\mathscr{C}}\left(B \boxtimes_{\mathscr{C}} D\right)
$$

in \mathscr{C} and three morphisms

$$
\mu_{\boxtimes}: I_{\otimes} \boxtimes_{\mathscr{C}} I_{\otimes} \rightarrow I_{\otimes}, \quad \Delta_{\otimes}: I_{\boxtimes} \rightarrow I_{\boxtimes} \otimes_{\mathscr{C}} I_{\boxtimes} \quad \text { and } \quad v: I_{\boxtimes} \rightarrow I_{\otimes},
$$ in \mathscr{C} satisfying several "natural" compatibility conditions. The 2-monoidal category is symmetric if $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$ has a symmetric twist τ compatible with sh and $\left(I_{\boxtimes}, \Delta_{\otimes}, v\right)$.

Example 2.

Any symmetric monoidal category $(\mathscr{C}, \otimes, I, \tau)$ is 2-monoidal with $\otimes_{\mathscr{C}}=\otimes=\boxtimes_{\mathscr{C}}, I_{\otimes}=I=I_{\boxtimes}$ and $\mathrm{sh}=\mathrm{id} \otimes \tau \otimes \mathrm{id}$.

Bialgebras in 2-monoidal categories

Let $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}, \mathrm{sh}\right)$ be a 2-monoidal category.

Bialgebras in 2-monoidal categories

Let $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ be a 2-monoidal category. A (unitary and counitary)bialgebra relative to the 2 -monoidal category [Aguiar-Mahajan, '10] is an object B in \mathscr{C} provided with: (1) a unitary alg. struct. (B, μ, η) w.r.t. $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$;

Bialgebras in 2-monoidal categories

Let $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ be a 2-monoidal category. A (unitary and counitary) bialgebra relative to the 2 -monoidal category [Aguiar-Mahajan, '10] is an object B in \mathscr{C} provided with:
(1) a unitary alg. struct. (B, μ, η) w.r.t. $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$;
(2) a counitary coalg. struct. (B, Δ, ε) w.r.t. $\left(\mathscr{C}, \otimes \mathscr{C}, I_{\otimes}\right)$;

Bialgebras in 2-monoidal categories

Let $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ be a 2-monoidal category. A (unitary and counitary) bialgebra relative to the 2 -monoidal category [Aguiar-Mahajan, '10] is an object B in \mathscr{C} provided with:
(1) a unitary alg. struct. (B, μ, η) w.r.t. $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$;
(2) a counitary coalg. struct. (B, Δ, ε) w.r.t. $\left(\mathscr{C}, \otimes \mathscr{C}, I_{\otimes}\right)$;

Bialgebras in 2-monoidal categories

Let $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}, \mathrm{sh}\right)$ be a 2-monoidal category. A (unitary and counitary) bialgebra relative to the 2 -monoidal category [Aguiar-Mahajan, '10] is an object B in \mathscr{C} provided with:
(1) a unitary alg. struct. (B, μ, η) w.r.t. $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$;
(2) a counitary coalg. struct. (B, Δ, ε) w.r.t. $\left(\mathscr{C}, \otimes \mathscr{C}, I_{\otimes}\right)$; such that

Bialgebras in 2-monoidal categories (cont.)

and

commute.

Bialgebras in 2-monoidal categories (cont.)

and

commute.

Still an issue: there is no definition of Laplace pairing for bialgebras in 2-monoidal categories!

Solution: Framed 2-monoidal categories

A symmetric 2-monoidal category $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ is called framed [H., '17] if there are:
(a) a symmetric monoidal category $\left(\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$;

Solution: Framed 2-monoidal categories

A symmetric 2-monoidal category $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ is called framed [H., '17] if there are:
(a) a symmetric monoidal category $\left(\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}^{\prime}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$;
(b) a faithful functor $F: \mathscr{C} \rightarrow \mathscr{C}^{\prime}$ that is symmetric lax monoidal w.r.t. $\left(\mathscr{C}, \otimes \mathscr{C}, I_{\otimes}, \tau\right)$ (and coherence maps φ_{0} and φ_{2}), and strict monoidal w.r.t. $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ (and coherence maps ψ_{0} and ψ_{2});

Solution: Framed 2-monoidal categories

A symmetric 2-monoidal category $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ is called framed [H., '17] if there are:
(a) a symmetric monoidal category $\left(\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}^{\prime}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$;
(b) a faithful functor $F: \mathscr{C} \rightarrow \mathscr{C}^{\prime}$ that is symmetric lax monoidal w.r.t. $\left(\mathscr{C}, \otimes \mathscr{C}, I_{\otimes}, \tau\right)$ (and coherence maps φ_{0} and φ_{2}), and strict monoidal w.r.t. $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ (and coherence maps ψ_{0} and ψ_{2});

Solution: Framed 2-monoidal categories

A symmetric 2-monoidal category $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ is called framed [H., '17] if there are:
(a) a symmetric monoidal category $\left(\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}^{\prime}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$;
(b) a faithful functor $F: \mathscr{C} \rightarrow \mathscr{C}^{\prime}$ that is symmetric lax monoidal w.r.t. $\left(\mathscr{C}, \otimes \mathscr{C}, I_{\otimes}, \tau\right)$ (and coherence maps φ_{0} and φ_{2}), and strict monoidal w.r.t. $\left(\mathscr{C}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right)$ (and coherence maps ψ_{0} and ψ_{2}); such that

commutes for all objects A, B, C and D in \mathscr{C},

Framed 2-monoidal categories (cont.)

as well as

Framed 2-monoidal categories (cont.)

as well as

Theorem 3 (H., '17).

Let A be a unit. comm. alg. in a cocomplete sym. mon. cat. $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\mathscr{C}}, \tau\right)$ such that $\otimes_{\mathscr{C}}$ commutes with colimits on each side. Let $B={ }^{\mu}$ TA be the comm. counit. bialg. in \mathscr{C} with deconcatenation coproduct and the tensor-wise product of A. Then, the category ${ }_{B} \operatorname{Mod}(\mathscr{C})$ of (firm) modules over B in \mathscr{C} has natural structure of framed 2-monoidal category, where \otimes is given by \otimes_{B} and \boxtimes by $\otimes_{\mathscr{C}}$.

Laplace pairings in framed 2-monoidal categories

Consider

(i) $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ a sym. 2-monoidal category framed inside of $\left(\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$ via the functor F;

Laplace pairings in framed 2-monoidal categories

Consider

(i) $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ a sym. 2-monoidal category framed inside of ($\left.\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}^{\prime}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$ via the functor F;
(ii) a unit. and counit. bialgebra $\left(C, \mu_{C}, \eta_{C}, \Delta_{C}, \varepsilon_{C}\right)$ relative to \mathscr{C};

Laplace pairings in framed 2-monoidal categories

Consider

(i) $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ a sym. 2-monoidal category framed inside of ($\left.\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}^{\prime}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$ via the functor F;
(ii) a unit. and counit. bialgebra $\left(C, \mu_{C}, \eta_{C}, \Delta_{C}, \varepsilon_{C}\right)$ relative to \mathscr{C};
(iii) a unit. algebra $\left(A, \mu_{A, \ell}, \eta_{A, \ell}\right)$ in $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$.

Laplace pairings in framed 2-monoidal categories

Consider

(i) $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ a sym. 2-monoidal category framed inside of ($\left.\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}^{\prime}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$ via the functor F;
(ii) a unit. and counit. bialgebra $\left(C, \mu_{C}, \eta_{C}, \Delta_{C}, \varepsilon_{C}\right)$ relative to \mathscr{C};
(iii) a unit. algebra $\left(A, \mu_{A, \ell}, \eta_{A, \ell}\right)$ in $\left(\mathscr{C}, \otimes \mathscr{C}, I_{\otimes}\right)$.

Laplace pairings in framed 2-monoidal categories

Consider

(i) $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}, \tau, \boxtimes_{\mathscr{C}}, I_{\boxtimes}\right.$, sh $)$ a sym. 2-monoidal category framed inside of ($\left.\mathscr{C}^{\prime}, \boxtimes_{\mathscr{C}^{\prime}}, I_{\boxtimes}^{\prime}, \tau^{\prime}\right)$ via the functor F;
(ii) a unit. and counit. bialgebra $\left(C, \mu_{C}, \eta_{C}, \Delta_{C}, \varepsilon_{C}\right)$ relative to \mathscr{C};
(iii) a unit. algebra $\left(A, \mu_{A, \ell}, \eta_{A, \ell}\right)$ in $\left(\mathscr{C}, \otimes_{\mathscr{C}}, I_{\otimes}\right)$.

A left Laplace pairing [H., '17] on C relative to \mathscr{C} and with values on A is a map $\langle\rangle:, C \boxtimes_{\mathscr{C}} C \rightarrow A$ in \mathscr{C} such that

commutes in \mathscr{C}^{\prime}

Laplace pairings in framed 2-monoidal categories (cont.)
and

commutes in \mathscr{C}.

Solution to both problems

Theorem 4 (H., '17).

The construction $T\left(S_{A} X\right)$ has a natural structure of bialgebra relative to the framed sym. 2-monoidal category ${ }_{T A}$ Mod, whose product is given by concatenation and whose coproduct is induced by that of $S_{A} X$ (using the interchange law). Moreover, $\tilde{\Delta}$ extends to a left (resp., right) Laplace pairing

$$
\hat{\Delta} \in \operatorname{Hom}_{\mu_{T A \otimes_{\beta}} \mu_{T A}}\left(T\left(S_{A} X\right) \otimes_{\beta} T\left(S_{A} X\right), T V_{c}^{\prime} \tilde{\otimes}_{\beta} T V_{c}^{\prime}\right)
$$

Solution to both problems

Theorem 4 (H., '17).

The construction $T\left(S_{A} X\right)$ has a natural structure of bialgebra relative to the framed sym. 2-monoidal category $\mu_{T A}$ Mod, whose product is given by concatenation and whose coproduct is induced by that of $S_{A} X$ (using the interchange law). Moreover, $\tilde{\Delta}$ extends to a left (resp., right) Laplace pairing
$\hat{\Delta} \in \operatorname{Hom}_{T A \otimes_{\beta} \mu_{T A}}(T\left(S_{A} X\right) \otimes_{\beta} T\left(S_{A} X\right), \underbrace{T V_{c}^{\prime} \tilde{\otimes}_{\beta} T V_{c}^{\prime}})$.
It has two different algebra structures!

The construction of the QFT

Given a local precut propagator Δ, let \mathscr{F}_{Δ} be the set of all FM associated with Δ.

The construction of the QFT

Given a local precut propagator Δ, let \mathscr{F}_{Δ} be the set of all FM associated with Δ.
Define the renormalization group \mathscr{G} as the subgroup of the group of automorphisms of the cocomm. coalgebra $S_{A} \mathscr{L}$ in ${ }_{A}$ Mod that are $S_{A} X$-colinear.

The construction of the QFT

Given a local precut propagator Δ, let \mathscr{F}_{Δ} be the set of all FM associated with Δ.
Define the renormalization group \mathscr{G} as the subgroup of the group of automorphisms of the cocomm. coalgebra $S_{A} \mathscr{L}$ in ${ }_{A}$ Mod that are $S_{A} X$-colinear.

Theorem 5 (Borcherds, '11; H., '17).

The group \mathscr{G} has a natural action on \mathscr{F}_{Δ} that is simple and transitive.

The construction of the QFT

Given a local precut propagator Δ, let \mathscr{F}_{Δ} be the set of all FM associated with Δ.
Define the renormalization group \mathscr{G} as the subgroup of the group of automorphisms of the cocomm. coalgebra $S_{A} \mathscr{L}$ in ${ }_{A}$ Mod that are $S_{A} X$-colinear.

Theorem 5 (Borcherds, '11; H., '17).

The group \mathscr{G} has a natural action on \mathscr{F}_{Δ} that is simple and transitive.

Theorem 6 (Borcherds, '11; H., '17).

Under further assumptions on Δ, namely Δ is of cut type and manageable, \mathscr{F}_{Δ} is nonempty.

The construction of the QFT (cont.)

Fact 7 (Borcherds, '11; H.).

Given any Feynman measure $\omega: S \mathscr{L}_{c} \rightarrow \mathbb{C}$, there exists a unique extension to a continuous linear map $\breve{\omega}: T\left(S \mathscr{L}_{c}\right) \rightarrow \mathbb{C}$ satisfying a certain recursiveness property.

The construction of the QFT (cont.)

Fact 7 (Borcherds, '11; H.).

Given any Feynman measure $\omega: S \mathscr{L}_{c} \rightarrow \mathbb{C}$, there exists a unique extension to a continuous linear map $\breve{\omega}: T\left(S \mathscr{L}_{c}\right) \rightarrow \mathbb{C}$ satisfying a certain recursiveness property.

The restriction $\grave{\varrho}$ of $\breve{\omega}$ to $T_{0}\left(S \mathscr{L}_{c}\right)$ is called a free $Q F T$.

The construction of the QFT (cont.)

Fact 7 (Borcherds, '11; H.).

Given any Feynman measure $\omega: S \mathscr{L}_{c} \rightarrow \mathbb{C}$, there exists a unique extension to a continuous linear map $\breve{\omega}: T\left(S \mathscr{L}_{c}\right) \rightarrow \mathbb{C}$ satisfying a certain recursiveness property.

The restriction $\stackrel{\infty}{\omega}$ of $\breve{\omega}$ to $T_{0}\left(S \mathscr{L}_{c}\right)$ is called a free QFT.

Theorem 8 (Borcherds, '11; H.).

The restriction $\grave{\omega}$ of the canonical extension $\breve{\omega}: T\left(S \mathscr{L}_{c}\right) \rightarrow \mathbb{C}$ of a FM associated to a local manageable propagator of cut type is equal on commutators of elements of $T_{0}\left(S \mathscr{L}_{c}\right)$ whose supports are spacelike-separated.

The construction of the QFT (cont.)

Fact 9.

The bialgebra $S \mathscr{L}_{c}$ acts naturally on the algebra $T_{0}\left(S \mathscr{L}_{c}\right)$.

The construction of the QFT (cont.)

Fact 9.

The bialgebra $S \mathscr{L}_{c}$ acts naturally on the algebra $T_{0}\left(S \mathscr{L}_{c}\right)$.

Hence, given $L_{I} \in S \mathscr{L}_{c} \otimes \mathbb{C}[[\lambda]]$ an infinitesimal interaction Lagrangian term, we may exponentiate its action to get an automorphism $\exp \left(i L_{I}\right)$ of $T_{0}\left(S \mathscr{L}_{c} \otimes \mathbb{C}[[\lambda]]\right)$.

The construction of the QFT (cont.)

Fact 9.

The bialgebra $S \mathscr{L}_{c}$ acts naturally on the algebra $T_{0}\left(S \mathscr{L}_{c}\right)$.
Hence, given $L_{I} \in S \mathscr{L}_{c} \otimes \mathbb{C}[[\lambda]]$ an infinitesimal interaction Lagrangian term, we may exponentiate its action to get an automorphism $\exp \left(i L_{I}\right)$ of $T_{0}\left(S \mathscr{L}_{c} \otimes \mathbb{C}[[\lambda]]\right)$.

An interacting QFT is the continuous and $\mathbb{C}[\lambda]]$-linear map $\Omega_{I}: T_{0}\left(S \mathscr{L}_{c} \otimes \mathbb{C}[[\lambda]]\right) \rightarrow \mathbb{C}[[\lambda]]$ given as the composition of $\check{\omega}$ and $\exp \left(i L_{I}\right)$.

