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1. Introduction

Suppose that X is the (non-compact) quotient of real hyperbolic
space Hn+1 by a geometrically finite, discrete group of hyperbolic
isometries

• X has a chaotic (Anosov) geodesic flow induced from the
geodesic flow on Hn+1

• X has a Laplacian induced from the Laplacian on Hn+1 which
describes quantum scattering on X

• Attached to X is a Selberg zeta function that ZΓ(s) which
links the length spectrum of geodesics with spectral data of
the Laplacian

These features make such manifolds X an excellent “laboratory” to
study chaotic scattering
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Example I: The Hyperbolic Cylinder (1 of 4)

Consider the discrete group of dilations

z 7→ µnz

acting on the upper half plane with Poincaré metric

ds2 = y−2
(
dx2 + dy2

)
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The Hyperbolic Cylinder (2 of 4)

H

eℓ1

r

t
Fℓ

1

The quotient X = H/Γ is a hyperbolic funnel R× S1 with metric

ds2 = dr2 + `2 cosh2 r dt2

and a single closed geodesic of length ` = log µ
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The Hyperbolic Cylinder (3 of 4)
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(X , g0) '
(
R× S1, dr2 + `2 cosh2 r dt2

)
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The Hyperbolic Cylinder (4 of 4)

• The length spectrum is {`} and there is a single, unstable,
closed geodesic

• The Laplacian is separable and its resolvent may be computed
using special functions

• The Selberg zeta function

ZΓ(s) =
∞

∏
k=1

(
1− e−(s+k)`(γ)

)
has a lattice of zeros at

sn,k = −k +
2πin

`

for k = 0, 1, 2, . . . and n ∈ Z.
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Resonances of the Hyperbolic Cylinder (1 of 2)
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Re(s) = 1/2

+

−

(∆X − λ)−1 (∆X − s(1− s))−1

Complex λ-plane Complex s-plane
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Resonances of the Hyperbolic Cylinder (2 of 2)
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Example II: A Pair of Trousers with Hyperbolic Ends (1 of
2)

`1

`2

`3
-
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Trousers with Hyperbolic Ends (2 of 2)
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Resonances of 3-funnel surfaces X (`1, `2, `3), consisting of funnels attached to
a hyperbolic pair of pants with boundary lengths `1, `2, `3.

From David Borthwick, Distribution of resonances for hyperbolic surfaces. Exp.
Math. 23 (2014), no. 1, 25–45.
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Geometry of H

•
(
R2

+, y−2
(
dx2 + dy2

))
), ∂∞H = R∪ {∞}

•
(
B, 4|dz |2/(1− |z |2)2

)
, ∂∞H = S1

• Isometries PSL(2, R) or PSU(1, 1)

• Geodesics are semicircles that intersect the boundary normally

• Wavefronts are horocycles

-
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Geodesic Flow

Consider the disc model of H with ∂∞B = S1. Let

(S1 × S1)− = {(z−, z+) ∈ S1 × S1 : z− 6= z+}

The unit tangent bundle SH is identified with (S1 × S1)− ×R as
follows. For (z−, z+, s) ∈ (S1 × S1)− ×R:

1. Let [z−, z+] be the oriented geodesic from z− to z+

2. Let s be the signed (hyperbolic) arc length along this
geodesic, with s = 0 corresponding to the Euclidean midpoint

3. Identify (z−, z+, s) with the tangent vector along [z−, z+] at
this point

In these coordinates, geodesic flow is

(z−, z+, s) 7→ (z−, z+, s + t)
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Discrete Groups of Isometries

In the upper half-plane model, the isometries

z 7→ az + b

cz + d

are isomorphic to the group PSL(2, R) and are of three types:

Name Characterization Example

Elliptic Rotation z 7→ −1/z
Parabolic Translation z 7→ z + 1
Hyperbolic Dilation z 7→ µz

A discrete group Γ of isometries of H is a group which is
topologically discrete as a subset of PSL(2, R).
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Discrete Groups, Fundamental Domain

If Γ is a discrete group, the orbit space X = H/Γ is

• an orbifold if Γ has elliptic elements

• a smooth manifold if Γ has no elliptic elements.

A fundamental domain for Γ is a closed subset F of H so that

(a) ∪γ∈Γγ(F ) = H

(b) The interiors of F and γ(F ) have empty intersection for all
γ 6= e

A discrete group Γ is geometrically finite if Γ admits a finite-sided
fundamental domain F
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The Limit Set (1 of 2)

If Γ is a discrete group, the limit set of Γ is the set of accumulation
points of Γ-orbits on ∂∞H

The complement of the limit set in ∂∞H is the ordinary set Ω(Γ).

Theorem (Poincaré, Klein-Fricke) For a discrete subgroup Γ of
Isom(H), the limit set Λ(Γ) is either

(a) 0, 1, or 2 points, if Γ is elementary,

(b) A nowhere dense, perfect subset of ∂∞H, or

(c) All of ∂∞H
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The Limit Set (2 of 2)

Theorem (Poincaré, Klein-Fricke) For a discrete subgroup Γ of
Isom(H), the limit set Λ(Γ) is either

(a) 0, 1, or 2 points, if Γ is elementary,

(b) A nowhere dense, perfect subset of ∂∞H, or

(c) All of ∂∞H

The group generated by z 7→ z + 1 or z 7→ µz are elementary.

If H/Γ is compact or has finite volume, Λ(Γ) = ∂∞H.

What lies in between?
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Schottky Groups and their Quotients (1 of 4)

A Schottky group is a discrete group Γ with a certain geometrically
described set of generators.

Suppose that {D1, · · · , D2r} are a collection of open Euclidean
discs in C with disjoint closures and centers on the real axis.

Let Sj ∈ Isom(H) map ∂Dj to ∂Dj+r and ext(Dj ) to int(Dj+r ).
Order the indices so that

Sj+2r = Sj , Sj+r = S−1j

D1
D2 D3D4

D5

D6

S1

S2
S3F



Introduction 2. Hyperbolic Geometry 3. Scattering Theory 4. Selberg’s Zeta Function Resonances: Theorems and Questions

Schottky Groups and their Quotients (2 of 4)

D1
D2 D3D4

D5

D6

S1

S2
S3F

Let Sj ∈ Isom(H) map ∂Dj to ∂Dj+r and ext(Dj ) to int(Dj+r ).
Order the indices so that

Sj+2r = Sj , Sj+r = S−1j

A discrete group Γ is a Schottky group if there is a set of discs
{Dj}2rj=1 so that Γ is generated by the transformations {Sj}2rj=1.

A discrete group Γ is convex co-compact if the fundamental
domain for Γ does not touch the limit set Λ(Γ). Button proved
that all convex co-compact discrete groups in H are Schottky.
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Schottky Groups and their Quotients (3 of 4)

Suppose Γ is a Schottky group associated to open discs
{D1, ·, D2r} and generated by {S1, · · · S2r}.
• The region F = H−∪2rj=1Dj is a fundamental domain for Γ
• X = H/Γ is a hyperbolic manifold of infinite volume and

genus 1− r

The geodesic flow on X = H/Γ can be coded by the Bowen-Series
Map. Let Ij = Dj ∩R and define

B : ∪2rj=1 Ij → ∪2rj=1 Ij

by
Bq = Sjq, q ∈ Ij

Associated to such maps is a dynamical zeta function which will
play an important role later.
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Schottky Groups and their Quotients (4 of 4)

The geodesic flow on X = H/Γ can be coded by the Bowen-Series
Map. Let Ij = Dj ∩R and define

B : ∪2rj=1Ij → ∪2j=1rIj

by
Bq = Sjq, q ∈ Ij

There is a one-to-one correspondence between primitive periodic
orbits {q, Bq, · · ·Bnq} of B and primitive closed geodesics of X
having length ` = log |(Bn)′(q)|.
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Hausdorff Dimension of the Limit Set

A natural object that measures the ‘complexity’ of the limit set is
the exponent of convergence δ for the Poincaré series

P(z , z ′; s) = ∑
γ∈Γ

e−sd(z,γ(z
′))

where d( · , · ) is hyperbolic distance.

Theorem (Patterson-Sullivan) The exponent of convergence δ is
the Hausdorff dimension of Λ(Γ).

Important Fact: s = δ gives the lowest eigenvalue (if δ > 1/2) or
the first resonance (if δ < 1/2)
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Trapped Orbits on X = H/Γ

Important Fact: The trapped set for geodesic flow has Hausdorff
dimension 1 + 2δ in the unit tangent bundle.

Recall that
SH ' (S1 × S1)− ×R

Trapped orbits in SX are identified with closed geodesics whose
endpoints lie in the limit set

Note that for δ = 1 (compact or finite-volume) the trapped set has
full dimension.
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Conformal Compactification, 0-integral, 0-trace

If X = H/Γ and Γ is convex co-compact, then X compactifies to
a manifold with boundary, X . In our case, this coincides with the
Klein compactification of H/Γ to (H/Γ) ∪ (Ω(Γ)/Γ))

If ρ is a defining function for ∂X , the hyperbolic metric g on X
takes the form g = ρ−2h where h is a smooth metric on X . Such a
manifold is called a conformally compact manifold.

On a conformally compact manifold, the 0-integral of a smooth
function f is

0
∫
X

f = FPε↓0
∫

ρ>ε
f dg

and the 0-trace of an operator with smooth kernel is the 0-integral
of the kernel on the diagonal. The 0-volume of X is the 0-integral
of 1.
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Scattering Theory
Let (X , g) be a Riemannian manifold, ∆X its positive Laplacian,
and consider the Cauchy problem

utt + (∆X − 1/4) u = 0, u(x , 0) = f (x), ut(x , 0) = g(x)

Since ∆X is self-adjoint, the formal solution is

u(t) = cos
(

t
√

∆X − 1/4
)

f +
sin
(
t
√

∆X − 1/4
)

√
∆X − 1/4

g

We construct functions of a self-adjoint operator A via Stone’s
formula

f (A) = lim
ε↓0

1

2πi

∫ ∞

−∞

(
1

A− λ− iε
− 1

A− λ + iε

)
f (λ) dλ

Stone’s formula shifts attention to the resolvent

RX (λ) = (∆X − λ)−1
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The Resolvent

RX (λ) = (∆X − λ)−1

Suppose X = H/Γ where Γ has no elliptic elements and is
geometrically finite.

X Spectrum Resolvent (∆X − λ)−1

Compact Discrete Spectrum Meromorphic in C

Not compact, Discrete in [0, 1/4) Meromorphic in C \ [1/4, ∞)
Finite Volume Continuous in [1/4, ∞) Resonances in a strip

Infinite volume Discrete in [0, 1/4) Meromorphic in C \ [1/4, ∞)
Continuous in [1/4, ∞) Resonances in a half-plane

Discrete spectrum yields bound states and “confined” motion

Continuous spectrum corresponds to scattering

Scattering resonances give localized states that “leak out”
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Analytic Continuation of the Resolvent (1 of 2)
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Analytic Continuation of the Resolvent (2 of 2)

Let RX (s) = (∆X − s(1− s))−1

The resolvent is RX (s) : L2(X )→ L2(X ) is analytic on
<(s) > 1/2 except for finitely many poles ζ ∈ [0, 1/4) where
ζ(n− ζ) is an eigenvalue

The resolvent RX (s) : C∞
0 (X )→ C∞(X ) (i.e., the integral kernel

of the resolvent) has a meromorphic continuation to the complex
s-plane
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Structure of the Resolvent Kernel (1 of 3)

To describe the resolvent kernel, consider H×H (upper
half-space model) with coordinates (x , y , x ′, y ′) let

τ =
√
(x − x ′)2 + y2 + (y ′)2,

and let

(ω, η, η′) =
(x − x ′, y , y ′)

τ

The resolvent kernel on H is a function of the point-pair invariant

σ(x , y , x ′, y ′) =
1

2
+

(x − x ′)2 + y2 + (y ′)2

4yy ′
=

1 + 2ηη′

4ηη′
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Structure of the Resolvent Kernel (2 of 3)

τ =
√
(x − x ′)2 + y2 + (y ′)2,

(ω, η, η′) =
(x − x ′, y , y ′)√

(x − x ′)2 + y2 + (y ′)2

The map (τ, x , ω, η, η′) 7→ (x , y , x ′, y ′) is smooth but note the
pre-image of (x , 0, x , 0) is a quarter-sphere S2

++ = (0, x , ω, η, η′)

The coordinates (τ, x , ω, η, η′) describe a blow-up of H×H

along the the diagonal of the ‘corner’ y = y ′ = 0. This blowup is
needed to describe the structure of the resolvent kernel.
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Structure of the Resolvent Kernel (3 of 3)

Let X ×0 X be the corresponding blow-up of X × X to a manifold
with corners.

Let ρ and ρ′ be defining functions for ∂X in the first and second
factors.

Theorem (Mazzeo-Melrose) If X is convex co-compact then

RX ( · , · ; s) ∈ I−20 (X ×0 X )+ (ηη′)sC∞(X ×0 X )+ (ρρ′)sC∞(X ×X )

with meromorphy in s ∈ C.
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Analytic Structure of the Resolvent (1 of 2)

RX (s) is finitely meromorphic: that is, near each resonance,

RX (s) =
p

∑
j=1

Aj (ζ)

(s(1− s)− ζ(1− ζ))j
+ H(s)

where H(s) is a holomorphic operator-valued function near s = ζ
and Aj (ζ) are finite-rank operators with smooth integral kernels.
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Analytic Structure of the Resolvent (2 of 2)

RX (s) is finitely meromorphic: that is, near each resonance,

RX (s) =
p

∑
j=1

Aj (ζ)

(s(1− s)− ζ(1− ζ))j
+ H(s)

where H(s) is a holomorphic operator-valued function near s = ζ
and Aj (ζ) are finite-rank operators with smooth integral kernels.

The multiplicity of a resonance ζ ∈ C, <(ζ) < 1/2

m(ζ) := rank (A1(ζ))

where γζ is a positively oriented circle containing ζ and no other
resonance.

We denote by RX the resonance set of ∆X
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Resonance Wave Expansions (1 of 2)

Using

RX (s) = (∆X − s(1− s))−1

we compute the solution operator for the wave equation

cos
(
t
√

∆X − 1/4
)

=
1

2πi

∫
<(s)= 1

2

=
[
(∆X − s(1− s))−1

]
(2s − 1) ds

+
N

∑
j=1

cosh
(
t
√

1/4− λj

)
Pj

The contribution from resonances comes from “shifting the
contour” to a line <(s) = −N
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Resonance Wave Expansions (2 of 2)

Theorem (Christiansen-Zworski) Suppose X = H/PSL(2, Z),
and χ, f ∈ C∞

0 (X ). Then for any N,

χ
sin t
√

∆X − 1/4√
∆X − 1/4

f =
1

2i ∑
λ∈σp(∆X )

(
e i
√

λj−1/4t − e−i
√

λj−1/4t√
λj − 1/4

χ(z)Cj (f )(z)

)

+ ∑
sj∈RX

e(sj−1/2)t sign(1/2−<(sj ) ∑
k≤m(sj )−1

vjk (f )(z)t
k

+O
(
e−tN

)



Introduction 2. Hyperbolic Geometry 3. Scattering Theory 4. Selberg’s Zeta Function Resonances: Theorems and Questions

Poisson Formula (Guillopé-Zworski)

Suppose X has c cusps with boundary length hi , let P be the
collection of prime geodesics C, and let PC be the Poincaré map
for C. As distributions on R,

0-tr cos t

√
∆X −

1

4
= −0−Vol(X )

8π

cosh(t/2)

sinh2(t/2)

+
1

2 ∑
C∈P

∞

∑
k=1

`(C)
|1− Pk

C |1/2
δ (|t| − k`(C))

+
c

4
coth(|t|/4)

+

[
c(γ− log 2)−

c

∑
i=1

log hi

]
δ(t)
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Selberg’s Zeta Function

Suppose that Γ is geometrically finite and has only hyperbolic
elements (so X = H/Γ is a smooth manifold without cusps).

Each conjugacy class {γ} corresponds to a closed geodesic of X .

Call a geodesic prime if it is not a power of any other closed
geodesic. Denote by `(γ) the length of γ and by P the set of
prime geodesics

Selberg’s Zeta function is given by

ZX (s) = ∏
γ∈P

∞

∏
k=1

(
1− e−(s+k)`(γ)

)
= exp

(
∑

γ∈P

∞

∑
m=1

(−1)m+1

m

e−s`(γ
m)

1− e`(γ
m)

)
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Selberg’s Zeta Function

Selberg’s zeta function plays a central role in the study or
resonances because

• It can be connected to dynamical zeta functions and its
analyticity properties elucidated using dynamical methods
(Ruelle-Fried, Patterson, Pollicott, Naud, . . . )

• It can be connected to the spectral theory of the Laplace
operator through the trace formula (Patterson,
Patterson-Perry, Guillopé-Zworski, Guillopé-Zworski-Lin,. . . )
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Analytic Continuation (Zworski, Guillopé-Lin-Zworski)

If Γ is a Schottky group associated to open discs {D1, · · · , D2r}
and generated by isometries {S1, · · · , S2r},
Selberg’s zeta function for a Schottky group Γ can be represented
as a dynamical zeta function associated to the Bowen-Series map.

Let
U = ∪2rj=1Dj

and
H(U) =

{
u ∈ L2(U) : u is analytic on U

}
Recall Bq = Sjq for q ∈ Ij = Dj ∩R and extend B to U by setting
B |Dj

= Sj .
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Analytic Continuation (Zworski, Guillopé-Lin-Zworski)

U = ∪2rj=1Dj , H(U) =
{

u ∈ L2(U) : u is analytic on U
}

The Ruelle Transfer Operator is the map L(s) : H(U)→ H(U)

defined by
L(s)u(z) = ∑

w∈U :Bw=z

B ′(w)−su(w)

and the dynamical zeta function associated to L(s) is

dX (s) = det(I − L(s))

As L(s) is a trace-class operator-valued analytic function dX (s) is
entire. A computation using the holomorphic Lefschetz fixed point
formula shows that

ZX (s) = dX (s)
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Divisor of Selberg’s Zeta Function (1 of 6)

Let G∞(s) = Γ(s)G (s)2 where G (s) is Barnes’ double gamma
function. (poles at s = −n, multiplicity 2n + 1, n = 0, 1, · · · )
Using scattering theory we can compute the divisor in terms of
scattering resonances and topological data of X

Theorem If Γ is convex co-compact then

ZΓ(s) = eq(s)PX (s)G∞(s)
−χ(X )

where q(s) is a polynomial of degree at most 2, and PX (s) is an
entire function whose zeros (with multiplicity) are determined by
the resonance set of ∆X .
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Divisor of Selberg’s Zeta Function (2 of 6)

• Topological zeros of multiplicity (2n+ 1)(−χ(X )) at s = −n,
n = 0, 1, 2 · · ·

• Spectral zeros at s = ζ where ζ > 1/2 and ζ(1− ζ) ia an eigenvalue of
the Laplacian, with the multiplicity of the eigenvalue

• Spectral zeros at s = ζ with multiplicity mζ for each resonance

topological zero

topological pole

resonance zero

1

The first zero of ZX (s) occurs
at s = δ

In case X has cusps, ZΓ(s) also
has poles
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Divisor of Selberg’s Zeta Function (3 of 6)

Theorem If Γ is convex co-compact then

ZΓ(s) = eq(s)PX (s)G∞(s)
−χ(X )

where q(s) is a polynomial of degree at most 2, and PX (s) is an
entire function whose zeros (with multiplicity) are determined by
the resonance set of ∆X .

Ideas of the proof:

• dX (s) = det(I − L(s)) is an entire function of order 2 by
estimates on singular values of L(s)

• ZX (s) = dX (s)

• ZX (s) obeys a functional equation determined by topological
and scattering data
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Divisor of Selberg’s Zeta Function (4 of 6)

Let π : H→ X be the natural projection. Using the identity

RX (π(z), π(z ′); s) = ∑
γ∈Γ

RH(z , γ(z ′); s)

one can show that for <(s) > 1 and F a fundamental domain for
Γ ∈H,

Z ′X (s)
ZX (s)

= (2s − 1)
∫
F

Φ(z ; s) dA(z)

where

Φ(z ; s) = (RX (π(z), π(w); s)− RH(z , w ; s))|z=w
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Divisor of Selberg’s Zeta Function (5 of 6)

This expression still makes sense on the line <(s) = 1/2 if we take

Υ(s) :=
Z ′X (s)
ZX (s)

= (2s − 1) 0
∫
F

Φ(z ; s) dA(z)

where

Φ(z ; s) = (RX (π(z), π(w); s)− RH(z , w ; s))|z=w

since, by the structure of the resolvent kernel,

Φ(z ; s) = y2sF (x , y ; s)

in local coordinates (x , y), where F is a smooth function.
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Divisor of Selberg’s Zeta Function (6 of 6)

This identity leads to a functional equation on the line
<(s) = 1/2:

Z ′X (s)
ZX (s)

+
Z ′X (1− s)

ZX (1− s)
= Υ(s) + Υ(1− s)

−(2s − 1)
Γ(s)Γ(1− s)

Γ(s − 1/2)Γ(1/2− s)
χ(X )

The first right-hand term gives rise to zeros from the resonances,

while the second right-hand term gives rise to topological zeros.
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5. Resonances: Theorems and Questions

Let
NX (r) = #{ζ ∈ RX : |ζ − 1/2| ≤ r}

How does this counting function reflect the nature of the trapped
set of geodesics?

Theorem (Guillopé Zworski) Suppose that X = H/Γ where Γ is
geometrically finite, and X is non-compact. Then NX (r) � CX r2.

• This result is due to Guillopé-Zworski using techniques of
scattering theory including Fredholm determinants for the
upper bound and the Poisson summation formula for
resonances for the lower bound. Their result is robust under
compact perturbations of X .
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Theorem (Guillopé-Zworski) Suppose that X = H/Γ where Γ is
geometrically finite, and X is non-compact. Then NX (r) � CX r2.

• The upper bound may be deduced, in the convex co-compact
case, from the fact that ZX (s) is entire of order 2. In higher
dimensions, the zeta function can be used to deduce upper
and lower bounds (with some important caveats).
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Distribution of Resonances in Strips

Theorem (Guillopé-Zworski) Suppose that X = H/Γ for Γ convex
co-compact. Then

# {ζ ∈ RX : |ζ| ≤ r , <(ζ) ≥ −M} = O
(

r1+δ
)

Note that 1 + δ is half the dimension of the trapped set in TX

Datchev-Dyatlov proved a similar bound for resonances near the
essential spectrum in asymptotically hyperbolic manifolds.

r

#{|ζ − ir| < a} = O(r1+δ)
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Spectral Gap (1 of 2)

Theorem (Naud 2010) Suppose Γ is convex co-compact and
δ < 1/2. There is an ε > 0 so that

RX ∩ {ζ : δ− ε ≤ <(ζ) ≤ δ} = {δ}.

What is the spectral gap between δ and the other resonances of X ?

Conjecture (Jakobson-Naud 2011) There are at most finitely
many resonances in the half-plane <(s) ≥ δ/2 + ε.

Theorem (Naud 2012) Suppose that σ ≥ δ/2. Then

#{ζ ∈ RX : σ ≤ <(s) ≤ δ, |Im(s)| ≤ r} = O
(

T 1+δ−ε(σ)
)

for ε(σ) > 0 as long as σ > δ/2.
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Spectral Gap (2 of 2)

Theorem (Naud 2014) Suppose that Γ is convex co-compact.
Then

#{ζ ∈ RX : σ ≤ <(s) ≤ δ, |Im(s)| ≤ T} < O
(

T 1+τ(σ)
)

Here τ(σ) satisfies τ(δ/2) = δ, τ(σ) < δ for all σ > δ/2, and
τ′(δ/2) < 0.
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