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Resolvents

(Md , g) .... complete Riemannian manifold

∆ = δd = ∇∗∇ ... positive Laplace operator on functions on M

Rz = (∆− z)−1 ... resolvent regarded as an analytic family of
operators L2c(M)→ H2

loc(M).

The resolvent may extend meromorphically from the resolvent set
across the spectrum.



Resolvents

Question

What is the maximal Riemann surface to which (∆− z)−1

continues and what are the poles?



Simple examples

M = R2n+1, n ≥ 1:

Quadratic branched cover of C, i.e. (∆− λ2)−1 is entire.

Adding a compactly supported metric or topological perturbation
gives a meromorphic function with finite rank Laurent coefficients.



Simple examples

M = R2n:

Logarithmic branched cover of C, i.e. (∆− exp(λ))−1 is entire.

Adding a compactly supported metric or topological perturbation gives a

meromorphic function with finite rank Laurent coefficients (even at the
logarithmic branching point (J. Müller and A.S. 2014)).



Rank one symmetric spaces

M = G/K a rank one symmetric space

Quadratic branched cover of C, i.e. (∆− λ2 − ρ2)−1 is
meromorphic with finite rank negative Laurent coefficients.
(Guillope-Zworski 1995 (for Hn), Bunke-Olbrich 2000,
Carron-Pedon 2002)

Poles are irreducible finite dimensional representations
(Guillope-Zworski 1995 (Hn), Zworski 2006 (Hn), Hilgert-Pasquale
2008).

Adding a compactly supported metric or topological perturbation gives a

meromorphic function with finite rank Laurent coefficients.



Results for Symmetric Spaces

M = G/K a higher rank symmetric space, rank odd

Quadratic branched but incomplete cover of C, i.e.
(∆− λ2 − ρ2)−1 is entire for | arg λ| < π/2.
(Mazzeo-Vasy 2005, A.S. 2005)

Adding a compactly supported metric or topological perturbation gives a meromorphic function with finite rank

Laurent coefficients.

In special cases the resolvent continues to a full cover of the
complex plane (see Huygen’s principle on the symmetric space).



Results for Symmetric Spaces

M = G/K a higher rank symmetric space, rank even

Quadratic branched but incomplete cover of C, i.e.
(∆− exp(λ)− ρ2)−1 is entire for |=λ| < π.
(Mazzeo-Vasy 2005, A.S. 2005)

Adding a compactly supported metric or topological perturbation gives a meromorphic function with finite rank

Laurent coefficients.

In the case of M = SL3(R)/SO(3): further continuation beyond
|=λ| < π leads to poles with infinite rank Laurent coefficients
(Hilgert, Pasquale, Przebinda 2014)



Infinite multiplicities

M = M1 ×M2, where M1,M2 are irreducible symmetric spaces
of non-compact type

Possibly poles with infinite rank Laurent coefficients if the group
G2 of M2 = G2/K2 has infinite dimensional irreducible
representations in L2(M2).

Two commuting operators!!



A collection of results

M manifold with a non-compact edge

Meromorphic continuation of Rz to a neighbourhood of the
spectrum. (Cano 2012, using complex scaling)



Asymptoticly Hyperbolic Spaces

M asymptotically hyperbolic

Quadratic branched cover of C, i.e. (∆− λ2 − ρ2)−1 is
meromorphic except at a point. (W. Müller 1987 (cusps of Q-rank
one), Mazzeo-Melrose 1987, Guillarmou 2005, Vasy 2012).



A collection of results

M has (asymptotic) cylindrical end of the form Y × R+

Meromorphic on a quadratic branched cover of C with infinitely
many branching points at the eigenvalues of ∆Y . Poles have finite
rank negative Laurent coefficients. (Guillope 1989, Melrose 1993)



A collection of results

M has a generalized cusp end of the form Y × R+ with
metric of the form dx2 + x−2agY

Meromorphic on a cover of C with one branch point that can be
either logarithmic or of order p, depending on rationality of a.
(Golenia-Moroianu 2008, Hunsicker, Roidos, A.S. 2012). Poles
have finite rank Laurent coefficients.



Consequences

Theorem

If (∆− z)−1 is meromorphic on a cover of C containing the
spectrum, then the spectrum is pure point (at the poles) +
absolutely continuous.

A much stronger statement is actually true: on the dense set of the
Hilbert space the spectral measure is analytic almost everywhere.



Relation to the spectral measure

The spectral family Eλ and the resolvent family Rz contain the
same information:

dEλ = lim
ε→0+

1

2πi
(Rλ+iε − Rλ−iε)

and

Rz =

∫
R

1

λ− z
dEλ.



The spectral measure on symmetric spaces of non-compact
type

For f , g ∈ C∞0 (M) we have

〈f , (∆g − z)−1g〉 =

∫
a∗×B

f̂ (λ, b)ĝ(λ, b)

|λ|2 + |ρ|2 − z

dλ

|c(λ)|2
db

f̂ (λ, b) =

∫
M
f (x)e(−iλ+ρ)(A(x ,b))dx ,

A(gK , kZ ) = A(k−1g)

(1)

G = NAK Iwasawa decomposition, g = N(g)exp(A(g))K (g)
B = K/Z , Z centralizer of A in K .



Huygens’ principle

(X , η) ... Lorentzian globally hyperbolic space-time

� ... normally hyperbolic differential operator

G+ retarded fundamental solution

suppG+ ⊂ {(x , y) ∈ X × X |
x , y can be connected by a causal curve}

� is called Huygens operator iff
suppG+ ⊂ {(x , y) ∈ X × X |
x , y can be connected by a lightlike geodesic}

local!!!
Old problem by Hadamard: find all Huygens operators!



Huygens’ principle and the resolvent

(M, g) ... complete simply connected non-positively curved
Riemannian manifold

� = − ∂2

∂t2
− P,

P = ∆ + V (x), V ∈ C∞(M).

Theorem

If � is a Huygens operator then (P − λ2)−1 is meromorphic with
at most a simple pole at λ = 0.



Huygens’ principle and the resolvent, The proof

Proof: For f , g ∈ C∞0 (M) we know that

〈f , cos(t
√
P)g〉

is compactly supported in t and therefore

〈f ,P−1/2 sin(t
√
P)g〉

is a constant plus a compactly supported function. The result
follows from

〈f , (P − λ2)−1g〉 =

∫ ∞
0
〈f ,P−1/2 sin(t

√
P)g〉e−λtdt.



Relation to scattering theory

Stationary scattering theory can be applied directly when the
resolvent is meromorphic:

Scattering matrix is holomorphic near the spectrum and
meromorphic with possible poles away from it.

Generalized eigenfunctions are meromorphic.

Analytic continuation of Eisenstein series.

for congruence surfaces Γ(N)\H the poles of the resolvent are
directly related to the non-trivial zeros of Riemann’s zeta
function.



(only?) Techniques

Complex scaling

meromorphic Fredholm theory and parametrix constructions
(for example the 0-calculus)

Pseudolaplacians (Colin de Verdiere)

Helgason’s Fourier transform (spherical Fourier transform),
i.e. explicit spectral measure.



Other operators

Laplace operator on p-forms

Similar results available, but branching points depend on p.
Resonances at zero may have cohomological meaning.

Atiyah-Patodi-Singer 1975,

for symmetric spaces in various generalities: , Mazzeo-Melrose
1987, Epstein-Mazzeo-Melrose 1991, Bunke-Olbrich 2000,
Carron-Pedon 2004

Carron 2002



Other operators

Dirac type operators

Similar results as for the Laplacian can be obtained. (Melrose
1992, Guillarmou-Moroianu-Park 2010 for Hn, Carron (2002,2005),
W. Müller (1994), Vaillant 2001)



Other operators

Anosov vector fields, Pollicott-Ruelle resonances

( Ruelle (1985), Pollicott (1986), Baladi-Keller (1990),
Gouzel-Liverani (2006), Baladi-Tsujii(2007) , Sjöstrand-Faure
(2008), Dyatlov-Zworski (2014), Dyatlov-Faure-Guillarmou (2014))
for symmetric spaces of rank one this links to resonances of the
Laplace operator.
locally symmetric spaces of higher rank!!



Spectral measure for tuples of commuting operators

The spectral measure for a a commuting set of operators lives on
Rn and then could be continued analytically to Cn. Is there a
notion of resonance in this case?
(higher rank situation)


