English version
APRÈS-MIDI SCIENTIQUE : THÉORIE DES REPRÉSENTATIONS
|
|
Institut Élie Cartan de Lorraine
(IECL, UMR CNRS 7502)
Metz, le 18 décembre 2025
|
|
Organisateurs :
Angela Pasquale, Tomasz Przebinda
|
L'organisation de cet après-midi scientifique est rendue possible gräce
à l'aide précieuse de Madame Elvire Meyer dans la coordination de cet événement
et aux soutiens de l'équipe Analyse et Théorie des Nombres (ATN) de l'IECL,
de l'Institut Élie Cartan
de Lorraine (IECL, UMR CNRS 7502) et de l'University of Oklahoma.
|
Programme
Conférenciers
:
-
Alexandre AFGOUSTIDIS
(CNRS et Université de Lorraine)
Titre : The Mackey bijection as a stratified equivalence
Résumé :
Stratified equivalence between algebras was defined in the context of the Bernstein decomposition of the Hecke algebra for a reductive p-adic group, to express the idea that the spectrum of every Bernstein component is assembled from very simple pieces (work of Baum-Nistor, Aubert-Baum-Plylen-Solleveld). The Mackey bijection is a topic in real groups: it relates the whole tempered dual of a real reductive group to the unitary dual of its Cartan motion group. I will explain how the Mackey bijection, and more precisely the Mackey embedding of C*-algebras recently constructed by Clare, Higson and Román, can be recast as a stratified equivalence in the sense used for p-adic groups. This is joint work with Pierre Clare.
-
Anne-Marie AUBERT
(CNRS et Institut de Mathématiques de Jussieu)
Titre : Asymptotic Schur orthogonality relations
Résumé :
The asymptotic Schur orthogonality relations generalize the classical Schur orthogonality relations to certain non-compact groups and representations that are not discrete series.
A general framework has been recently introduced by Kazhdan and Yom Din via the notion of c-temperedness, a property which implies temperedness.
The main idea is to replace the L2-pairing of matrix coefficients over the entire group with a limit of a pairing over a sequence of bounded subsets, using a sequence of bounded measures.
For semisimple groups over local fields, Kazhdan and Yom Din conjectured that conversely temperedness implies c-temperedness.
For K-finite matrix coefficients, they proved the validity of their conjecture in the nonarchimedean case, and, with La Rosa, we proved it in the archimedean case.
On the other hand, Mandal and Mondal showed that all unitary irreducible representations of Heisenberg groups over local fields are c-tempered.
In this talk, I will describe the above results in more details and provide applications.
-
Jessica FINTZEN
(Universität Bonn)
Titre : Reduction to depth-zero for $\bar{\mathbb{Z}}[1/p]$-representations of p-adic groups
Résumé :
The category of smooth complex representations of p-adic groups decomposes into Bernstein blocks and by a joint result with Adler, Mishra and Ohara from August 2024 we know that under some minor tameness assumptions each Bernstein block is equivalent to a depth-zero Bernstein block, which are the representations that correspond roughly to representations of finite groups of Lie type. This result allows to reduce a lot of problems about representations of p-adic groups and the Langlands correspondence to their depth-zero counterpart that is often easier to solve or already known. For number theoretic applications one likes to have a similar result when working with representations whose coefficients are a more general ring than the complex numbers.
In this talk we present analogous results for R-representations of p-adic groups where R is any ring that contains all p-power roots of unity, a fourth root of unity and the inverse of a square-root of p, for example, R could be an algebraically closed field of characteristic different from p or the ring $\bar{\mathbb{Z}}[1/p]$. This is joint work in progress with Jean-François Dat. While the result is analogous to the result with complex coefficients (except for the “blocks” being “larger”), the proof is of a very different nature. In the complex setting the proof is achieved via type theory and an isomorphism of Hecke algebras, which are techniques not available for general R-representations. We will sketch in the talk how we deal with the category of R-representations instead.
Exposés
:
Salle Pierre et Marie Curie (rez-de-jardin), Bâtiment UFR-MIM
Programme :
| 14h25 |
Ouverture de l'après-midi scientifique |
| 14h30-15h20 |
Jessica Fintzen : Reduction to depth-zero for $\bar{\mathbb{Z}}[1/p]$-representations of p-adic groups |
| 15h30-16h20 |
Alexandre Afgoustidis : The Mackey bijection as a stratified equivalence
|
| 16h20-17h00 |
Pause Café Thé
|
| 17h00-17h50 |
Anne-Marie Aubert : Asymptotic Schur orthogonality relations
|
| 19h30 |
Dîner
|
Soutenance de thèse d'Aurélie PAULL :
Cette journée est en lien avec la soutenance de thèse
d'Aurélie PAULL, le 18 décembre 2025 à 10h00
dans la salle ARJ-027 (Pierre et Marie Curie) du Bâtiment UFR-MIM.
Titre:
La représentation de Weil sur un corps fini de caractéristique deux.
Participants
(liste mise à jour le 28/11/2025)
Inscription
Les personnes souhaitant participer à cet après-midi scientifique sont
invitées à remplir le formulaire d'inscription ci-dessous
et de l'envoyer
à
Angela Pasquale (angela.pasquale_at_univ-lorraine.fr),
dans les meilleurs délais avant le 7 décembre 2025.
Formulaire
d'inscription
La participation est libre mais l'inscription avant la date limite est
obligatoire pour une bonne prévision des effectifs (salle, pause café-tée, restaurant
...)
Contacts
Secrétariat :
Mme Elvire Meyer
IECL, Université de Lorraine
Renseignements :
Pour tout renseignement, vous pouvez contacter l'un des organisateurs :
Angela Pasquale ou
Tomasz Przebinda