Feuille de TD n⁰ 5 : Réduction d'endomorphismes.

Exercice 1 Soit $A = \begin{pmatrix} 2 & 1 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

- (a) Déterminer le spectre de A sur \mathbb{R} .
- (b) Déterminer, si possible, une matrice inversible P et une matrice diagonale D telles que $D = P^{-1}AP$.

Exercice 2 Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x, y, z) = (y - z, -x + 2y - z, x - y + 2z).$$

- (a) Étudier si f est diagonalisable.
- (b) Si f est diagonalisable, déterminer une base de \mathbb{R}^3 formée par des vecteurs propres de f.

Exercice 3 Soit $f: V \to V$ un isomorphisme. Montrer les propriétés suivantes :

- (a) Toute valeur propre de f est non nulle.
- (b) Si λ est une valeur propre de f, alors λ^{-1} est une valeur propre de f^{-1} .
- (c) Si f est diagonalisable, alors f^{-1} est diagonalisable.

Exercice 4 Soit $E = \mathbb{R}_2[x]$ l'espace vectoriel des polynômes de degré ≤ 2 à coefficients réels et soit $f: E \to E$ l'application linéaire définie par :

$$f(1) = 1 + 4x^2$$
, $f(x) = -2 + x$, $f(x^2) = x + x^2$.

Déterminer les valeurs propres de f et les espaces propres leur associés.

Exercice 5 (a) Pour quelles valeurs du paramètre $\alpha \in \mathbb{R}$ l'endomorphisme $f : \mathbb{R}^2 \to \mathbb{R}^2$ donné par $f(x,y) = (x,\alpha x + y)$ est-il diagonalisable?

- (b) Déterminer le polynôme minimal de f en fonction de α .
- **Exercice 6** (a) En utilisant le théorème de Hamilton-Cayley, montrer que si $A \in M_2(\mathbb{K})$, alors

$$A^{2} - (\operatorname{Tr} A)A + (\det A)I_{2} = 0$$

où Tr A est la trace de A, det A son déterminant, et I_2 est la matrice idéntique 2×2 .

(b) En déduire que si A est inversible, alors $A^{-1} = \frac{1}{\det A} \left(-A + (\operatorname{Tr} A)I_2 \right)$.

(c) Appliquer la formule de (b) au calcul de l'inverse de la matrice $\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$.

Exercice 7 Soit E un espace vectoriel de dimension n sur \mathbb{K} (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et soit $f \in \mathcal{L}(E)$. On dit que f est nilpotent s'il existe un nombre $k \in \mathbb{N}$ tel que $f^k = 0$, où $f^k = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ fois}}$. Montrer que :

- (a) Si f est nilpotent, alors le polynôme caracteristique χ_f de f est donné par $\chi_f(x) = (-1)^n x^n$. En déduire que la seule valeur propre de f est 0.
- (b) Si $\mathbb{K} = \mathbb{C}$ et si 0 est la seule valeur propre de f, alors f est nilpotent.
- (c) Au moyen de l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$, montrer que la propriété (b) n'est pas vraie si $\mathbb{K} = \mathbb{R}$.