Feuille de TD n⁰ 1 : Espaces métriques (premières notions)

Exercice 1 Soit X un ensemble non vide et $f: X \to \mathbb{R}$ une fonction. On définit $d_f: X \times X \to \mathbb{R}$ par $d_f(x,y) := |f(x) - f(y)|$. Montrer que d_f est une semi-distance. Sous quelles conditions sur f la semi-distance d_f est une distance?

Exercice 2 Dessiner la boule unitaire ouverte $B(0,1) = \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x|| < 1\}$ lorsque $||\cdot||$ est l'une des normes suivantes sur \mathbb{R}^2 :

- (a) $||x||_1 := |x_1| + |x_2|$,
- (b) $||x||_2 := (|x_1|^2 + |x_2|^2)^{1/2}$,
- (c) $||x||_{\infty} := \max\{|x_1|, |x_2|\}$.

Expliquer graphiquement l'équivalence des trois normes.

Exercice 3 On dit qu'une fonction $\varphi: [0, +\infty[\to [0, +\infty[\text{ préserve les distances si pour tout espace métrique } (X, d) la fonction <math>d_{\varphi}: X \times X \to \mathbb{R}$ définie par $d_{\varphi}(x, y) := \varphi(d(x, y))$ est une distance sur X.

- (a) Supposons que $\varphi: [0, +\infty[\to [0, +\infty[$ préserve les distances. Montrer que
 - 1) $\varphi^{-1}(0) = \{0\},\$
 - 2) (sous-additivité) pour tous $x, y \in [0, +\infty[$ on a $\varphi(x+y) \le \varphi(x) + \varphi(y)$.

 $[Indication: on pourra considérer <math>\mathbb{R}$ muni de le distance usuelle en tant qu'espace métrique.]

- (b) Soit $\varphi : [0, +\infty[\to [0, +\infty[$ qui satisfait (1) et (2) de (a). Supposons aussi que φ est croissante. Montrer que φ préserve les distances.
- (c) Soit $\varphi : [0, +\infty[\to [0, +\infty[$ une fonction croissante, concave et telle que $\varphi^{-1}(0) = \{0\}$. Montrer que φ préserve les distances.

[Indication: On rappelle qu'une fonction φ d'un intervalle I vers \mathbb{R} est dite concave lorsque, pour tous $x_1, x_2 \in I$ et tout $\lambda \in [0, 1]$ on a : $\varphi(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda \varphi(x_1) + (1 - \lambda)\varphi(x_2)$.]

(d) Déduire de ce qui précede que les fonctions suivantes préservent les distances :

$$\varphi_1(t) = \frac{t}{t+1}, \qquad \varphi_2(t) = \arctan(t).$$

- (e) On considère la distance $d(x,y) = |x-y| \sin \mathbb{R}$. Montrer que les distances d_{φ_1} et d_{φ_2} ne sont pas équivalentes à d.
- (f) Soit $\varphi: [0, +\infty[\to [0, +\infty[$ une fonction qui préserve les distances. On suppose que φ est inversible et que φ et φ^{-1} sont continues en 0. Montrer que pour tout espace métrique (X, d), les distances d et d_{φ} sont topologiquement équivalentes. En déduire que d_{φ} est équivalent à d si $\varphi \in \{\varphi_1, \varphi_2\}$.

Exercice 4 Donner un exemple de deux espaces (semi-)métriques (X, d) et (X', d') et d'une application $f: X \to X'$ pour lesquels f est bijective et continue mais f^{-1} n'est pas continue.

Exercice 5 (a) Montrer que la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$ est continue mais pas uniformément continue.

(b) Montrer que la fonction $g:]0,+\infty[\to \mathbb{R}$ définie par $g(x)=\sqrt{x}$ est uniformément continue mais pas lipschitzienne.

Exercice 6 Soit (X, d) un espace métrique. Par la suite $A, B \subset X$ dénotent deux parties non vides de X et z est un élément de X. On pose

$$d(z, A) := \inf\{d(z, y) : y \in A\},\$$

$$diam(A) := \sup\{d(x, y) : x, y \in A\} \in [0, +\infty].$$

- (a) Montrer que $|d(x, A) d(y, A)| \le d(x, y)$ pour tous $x, y \in X$. En déduire que la fonction $x \to d(x, A)$ est lipschitzienne de rapport 1.
- (b) Montrer que d(x, A) = 0 si et seulement si $x \in \overline{A}$.
- (c) Pour r > 0, le voisinage ouvert de A de rayon r est défini par $B(A,r) := \{x \in X : d(x,A) < r\}$. Montrer que $B(A,r) = \bigcup_{x \in A} B(x,r)$. En déduire que B(A,r) est un ouvert qui contient A.
- (d) Pour $r \geq 0$, le voisinage fermé de A de rayon r est défini par $B_f(A,r) := \{x \in X : d(x,A) \leq r\}$. Montrer que $B_f(A,r)$ est fermé. Est-ce que $B_f(A,r)$ est l'adhérence de B(A,r)?
- (e) Montrer que diam $(B_f(A,r)) \leq \text{diam}(A) + 2r$.
- (f) Déduire de (e) l'estimation suivante pour le diamètre des boules de X:

$$\operatorname{diam}(B(x,r)) \leq \operatorname{diam}(B_f(x,r)) \leq 2r$$
.

Donner un exemple qui montre qu'on peut avoir diam $(B_f(x,r)) < 2r$.