Par la suite, on utilise la notation introduite dans la feuille "Quelques notions de probablité".

1. Lois associées à une variable aléatoire réelle discrète

Soit (Ω, \mathcal{T}) un espace probabilisable. Une variable aléatoire réelle $X: \Omega \to \mathbb{R}$ est dite discrète si l'image $X(\Omega)$ est un ensemble fini ou bien infini dénombrable. Si $X(\Omega)$ est une partie finie, on parle de variable aléatoire réelle discrète finie; sinon, on parle de variable aléatoire réelle discrète infinie.

On note $X(\Omega) = \{x_i : i \in I\}$ où I est une partie de l'ensemble $\mathbb{N} = \{0, 1, 2, \dots\}$ des nombres naturels.

On montre que X est une variable aléatoire discrète si et seulement si pour tout $i \in I$ on a $[X = x_i] \in T$. Ici on rappelle la notation [X = a] pour la partie $\{\omega \in \Omega : X(\omega) = a\}$ de X.

La famille $\{[X=x_i]\}_{i\in I}$ forme une partition de Ω , c'est-à-dire satisfait les propriétés suivantes :

- (1) Pour tous $i, j \in I$ avec $i \neq j$, on a $[X = x_i] \cap [X = x_j] = \emptyset$
- (2) $X = \bigcup_{i \in I} [X = x_i]$.

Elle est appelée le système complet d'événements associé à X.

On rappelle les définitions suivantes :

- l'espérance de X est définie par $E(X) = \sum_i x_i P([X=x_i])$. la variance de X est définie par $V(X) = \sum_i (x_i E(X))^2 P([X=x_i])$

Dans le cas de variables discrètes aléatoires réelles infinies, on démande la convergence absolue des séries

On montre (théorème de Koenig-Huygens) que $V(X) = E(X^2) - E(X)^2$, avec $E(X^2) = \sum_i x_i^2 P([X = x_i])$.

Soient maintenant (Ω, \mathcal{T}, P) un espace probabilisé et $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle discrète de système complet d'événements $\{[X=x_i]\}_{i\in I}$. La loi de probabilité ou distribution, de X est l'application $P_X: X(\Omega) \to [0,1]$ définie par $P_X(x_i) = P([X=x_i])$.

On remarque (d'après la définition de probabilité P) que $\sum_{i \in I} P_X(x_i) = \sum_{i \in I} P([X = x_i]) = 1$.

Exemple 1 : On note [[1,n]] l'ensemble $\{1,2,\ldots,n\}$. On dit qu'une variable aléatoire réelle discrète X suit une loi uniforme sur [[1, n]] si $X(\Omega) = [[1, n]]$ et pour tout $j = 1, \ldots, n$ on a P([X = j]) = 1/n. L'espérance et la variance de X sont données par

$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2-1}{12}$.

Exemple 2 : Soit $p \in]0,1[$. On dit qu'une variable aléatoire réelle discrète X suit la loi de Bernoulli de paramètre p si $X(\Omega) = \{0, 1\}$ et P([X = 1]) = p (et donc P([X = 0]) = 1 - p). L'espérance et la variance de X sont données par

$$E(X) = p$$
 et $V(X) = p(1-p)$.

Exemple 3 : Soit $n \in \mathbb{N}^* = \{1, 2, \dots\}$ et $p \in]0,1[$. On dit qu'une variable aléatoire réelle discrète X suit la loi binomiale de paramètre (n,p) si $X(\Omega) = [[0,n]]$ et pour tout $j=1,\ldots,n$ on a $P([X=j]) = \binom{n}{j} p^j q^{n-j}$. Ici, le coefficient binomial $\binom{n}{j}$ est défini par $\frac{n!}{j!(n-j)!}$ avec $n!=1\cdot 2\cdot \cdot \cdot \cdot \cdot n.$ L'espérance et la variance de X sont données par

$$E(X) = np$$
 et $V(X) = npq$.

2. Lois associées à un couple de variables aléatoires réelles discrètes

Soit (Ω, \mathcal{T}) un espace probabilisable. Un couple de variables aléatoires discrètes est une application $Z: \Omega \to \mathbb{R}$ \mathbb{R}^2 telle que pour tout $\omega \in \Omega$ on a $Z(\omega) = (X(\omega), Y(\omega))$, où X et Y sont des variables aléatoires reélles discrètes sur (Ω, \mathcal{T}) . On écrira Z = (X, Y).

Par la suite, X et Y dénotent deux variables aléatoires discrètes définies sur le meme espace probabilisé

On note $X(\Omega) = \{x_i : i \in I\}$ et $Y(\Omega) = \{y_j : j \in J\}$ où I et J sont deux parties de \mathbb{N} . La famille $\{[X=x_i]\cap [X=x_j]\}_{(i,j)\in I\times J}$ forme une partition de Ω , appelée le système complet d'événements associé au couple (X, Y).

L'application $P_{(X,Y)}: X(\Omega) \times Y(\Omega) \to [0,1]$ définie par

$$P_{(X,Y)}(x_i, y_j) = P([X = x_i] \cap [Y = y_j])$$

 $\overset{?}{s}$ 'appelle loi du couple (X,Y) ou loi conjointe de X et Y.

La loi P_X de X est dite première loi marginale du couple et la loi P_Y de Y est dite deuxième loi marginale du couple.

Les égalités suivantes permettent d'obtenir les lois marginales P_X et P_Y à partir de $P_{(X,Y)}$:

- Pour tout $i \in I$ on a $P([X=x_i]) = \sum_{j \in J} P([X=x_i] \cap [Y=y_j])$ Pour tout $j \in J$ on a $P([Y=y_j]) = \sum_{i \in I} P([X=x_i] \cap [Y=y_j])$

Ces deux égalités sont une conséquence immediate du fait que $\{[X=x_i] \cap [Y=y_j]\}_{(j\in J)}$ est une partition de $[X=x_i]$ et que $\{[X=x_i]\cap [Y=y_j]\}_{(i\in I]}$ est une partition de $[Y=y_j]$.

Supposons que $x \in X(\Omega)$ et $P([X = x]) \neq 0$. La loi conditionnelle à [X = x] de Y est l'application $P_{[X=x]}:Y(\Omega)\to\mathbb{R}$ définie par

$$P_{[X=x]}([Y=y]) = \frac{P([X=x] \cap [Y=y])}{P([X=x])}$$
.

De même, supposons que $y \in Y(\Omega)$ et $P([Y = y]) \neq 0$. La loi conditionnelle à [Y = y] de X est l'application $P_{[Y=x]}:X(\Omega)\to\mathbb{R}$ définie par

$$P_{[Y=y]}([X=x]) = \frac{P([X=x] \cap [Y=y])}{P([Y=y])}.$$

On dit que les événements [X = x] et [Y = y] sont indépendants si $P([X = x] \cap [Y = y]) = P([X = x])$ |x|P([Y=y]). On dit que les deux variables aléatories discrètes X et Y sont indépendantes si P([X=y]) $[X] \cap [Y = y]) = P([X = x])P([Y = y])$ pour tous $x \in X(\Omega)$ et $y \in Y(_omega)$.

Soit $g: X(\Omega) \times Y(\Omega) \to \mathbb{R}$ une fonction. L'application $Z: \Omega \to \mathbb{R}$ définie par $Z(\omega) = g(X(\omega), Y(\omega))$ est une variable aléatoire réelle discrète telle que pour tout $z \in Z(\Omega)$

$$[Z=z] = \bigcup_{(x,y) \in X(\Omega) \times Y(\Omega): g(x,y)=z} \left([X=x] \cap [Y=y] \right).$$

La loi de probabilité de la variable Z est définie pour tout $z \in Z(\Omega)$ par

$$P([Z=z]) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega): g(x,y) = z} P\big([X=x] \cap [Y=y]\big) \,.$$

En particulier, si les variables X et Y sont indépendantes, alors

$$P([Z=z]) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega): g(x,y) = z} P([X=x]) P([Y=y]) \,.$$

En appliquant la définition ci-dessus à la fonction $g:(x,y)\mapsto x+y$, on obtient la somme X+Y de deux variables aléatoires réelles discrètes : c'est donc la variable aléatoire réelle discrète telle que pour tout $z \in (X + Y)(\Omega)$

$$[X+Y=z] = \bigcup_{(x,y) \in X(\Omega) \times Y(\Omega): x+y=z} \left([X=x] \cap [Y=y] \right).$$

La loi de probabilité de la variable X + Y est définie pour tout $z \in (X + Y)(\Omega)$ par

$$P([X+Y=z]) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega): x+y=z} P\big([X=x] \cap [Y=y]\big) \,.$$

En particulier, si les variables X et Y sont indépendantes, alors

$$P([X+Y=z]) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega): x+y=z} P([X=x]) P([Y=y]) \,.$$

Soit $g: X(\Omega) \times Y(\Omega) \to \mathbb{R}$ une fonction et on considère la variable aléatoire $Z: \Omega \to \mathbb{R}$ définie par $Z(\omega)$ $g(X(\omega), Y(\omega))$. On dit que Z admet une espérance si la série double $\sum_{i,j} g(x_i, y_j) P([X = x_i] \cap [Y = y_j])$ converges absolument (ce qui est automatiquement satisfait si X et Y sont variables aléatoires discrètes finies). Dans ce cas, l'espérance de Z est définie par

$$E(Z) = \sum_{i \in I} \sum_{j \in J} g(x_i, y_j) P([X = x_i] \cap [Y = y_j]).$$

On reenvoie au chapitre 9 de C. Gautiers et al, Mathématiques tout-en-un. BCPST 2ème année, Dunod, 2008, pour plus d'information ainsi que pour les définitions de la covariance et la corrélation linéaire de deux variables aléatoires réelles discrètes.