L3 - Analyse hilbertienne et de Fourier: Feuille de TD n°3

Exercice 1 _

Montrer que l^1 est un espace normé pour la norme $||x|| := \sum |x_n| < \infty$ et que cette norme ne provient pas d'un produit scalaire.

Exercice 2 __

Soient (x_n) et (y_n) deux suites d'éléments d'un espace de Hilbert, appartenant à la boule unité fermée et telles que (x_n, y_n) converge vers 1 lorsque n tend vers l'infini. Montrer que $||y_n - x_n||$ converge vers 0 lorsque n tend vers l'infini.

Exercice 3 ____

Chercher dans l^2 un ensemble fermé non vide qui n'a aucun élément de plus petite norme.

Exercice 4

Dans l^2 , posons: $\langle x,y \rangle := \sum_{k=1}^{\infty} x_k y_k$, montrer que $(l^2,<,>)$ est un espace de Hilbert. On munit maintenant l^2 du produit scalaire $<,>':=\sum_{k=1}^{\infty} \frac{1}{k^2} x_k y_k$. Est-il toujours un espace de Hilbert?

Exercice 5 _

Soient M et N deux ensembles dans un espace de Hilbert H tels que tout élément x de H se laisse décomposer d'une façon et d'une seule sous la forme x=u+v avec $u\in M$ et $v\in N$. Peut-on en déduire que M et N sont des sous-espaces vectoriels de H?

Exercice 6 _____

Calculer le nombre suivant:

$$\inf_{a,b,c\in\mathbb{R}} \int_{-1}^{1} |x^3 - a - bx - cx^2|^2 dx.$$

Exercice 7

Soit H un espace euclidien. Pour $x_1, ..., x_n \in H$, on note $G(x_1, ..., x_n)$ le déterminant de la matrice $n \times n$ de terme général (x_i, x_j) .

- 1. Montrer que $G(x_1,...,x_n) \ge 0$, et que $G(x_1,...,x_n) = 0$ si et seulement si la famille $(x_1,...,x_n)$ est liée.
- 2. Soit L le sous-espace vectoriel de H engendré par n éléments $x_1, ..., x_n$ indépendants.

Montrer que:

$$d(x,L)^{2} = \frac{G(x,x_{1},...,x_{n})}{G(x_{1},...,x_{n})}$$

3. En déduire l'inégalité d'Hadamard:

$$G(x_1, ..., x_n) \le ||x_1||^2 ... ||x_n||^2$$

Indication: soit $L := Vect\{x_1, ..., x_n\}$ et x = y + z avec $y \in L$ et $z \perp L$. Montrer que $G(x, x_1, ..., x_n) = ||z||^2 G(x_1, ..., x_n)$.

Exercice 8 __

Soit X l'espace vectoriel des fonctions continues $f:[-1,1] \to \mathbb{R}$, muni du produit scalaire $(f,g):=\int_{-1}^1 fgdt$, et, pour $n \geq 0$, $f_n(t)=t^n$. Déterminer les trois premiers termes de la famille orthonormale (e_n) de X obtenue par orthonormalisation de (f_n) (polynômes de Legendre).

Exercice 9 _

Montrer que dans $E = l_2$, l'orthogonal du sous-espace des suites ayant le support fini est $\{0\}$. On pourra considérer une base orthonormée $\{e_n\}$ et calculer (x, e_n) pour $n \in supp(x)$ et $x \in E$. Commenter le résultat.

Exercice 10

Soit E un espace de Hilbert séparable de dimension infinie et soit $\{e_n\}_{n\geq 1}$ une base orthonormée. On pose, pour $x=\sum_{n\geq 1}x_ne_n$, $||x||_0:=\sum_{n\geq 1}2^{-n}|x_n|$. Montrer que $||.||_0$ est une norme, qui n'est pas équivalente à la norme de E.

Exercice 11

Soit G un sous-espace dense d'un espace de Hilbert séparable H. Montrer que H admet une suite orthonormée complète dont tous les éléments appartiennent à G.

Exercice 12

On considère dans l^2 l'ensemble $M = \{x = (x_k) \in l^2 : \sum_{k=1}^{\infty} x_k = 0\}.$

- 1. Montrer que M est un sous-espace vectoriel dense dans l^2 .
- 2. Chercher dans M une famille libre dont l'orthogonalisation conduit à une base de l^2 .

Exercice 13

Soit $\{e_n\}$ une suite orthonormée dans l_2 , $e_n=(u_n^j)$. Montrer que pour tout $j\geq 1$, $\lim_{n\to\infty}u_j^n=0$.

Exercice 14 _

On se place dans un espace Euclidien. Donner une suite orthonormée (e_i) non complète mais vérifiant la propriété: " $\forall j < y, e_j >= 0 \Rightarrow y = 0$ "

Indication: soit $e_1, ..., e_n$ une suite orthonormée dans une espace de Hilbert H, et désignons par E le sev engendré par:

$$f_1 := \sum_{n=1}^{\infty} \frac{e_n}{n}$$
 et $e_2, e_3...$

 $f_1 := \sum_{n=1}^{\infty} \frac{e_n}{n}$ et $e_2, e_3...$ Considérer la suite orthonormée $e_2, e_3, ...$ dans E.

Exercice 15 _

Soit H un espace de Hilbert possédant une base orthonormale $(\phi_n)_{n\in\mathbb{N}}$. Le produit scalaire de H est noté $\langle .,. \rangle$.

- 1. Montrer que pour tout $x \in H$, les séries $\sum_{n \in \mathbb{N}} \langle x, \phi_n \rangle \phi_{n+1}$ et $\sum_{n \in \mathbb{N}} \langle x, \phi_{n+1} \rangle \phi_n$ convergent dans H.
- 2. Pour $x \in H$, on pose $T(x) := \sum_{n \in \mathbb{N}} \langle x, \phi_n \rangle \phi_{n+1}$.
 - a) Montrer que l'application linéaire T est une isométrie de H dans H.
 - b) Montrer que T n'est pas surjective.
 - c) Pour $(p,q) \in \mathbb{N}^2$, $p \neq q$, calculer $||T(\phi_p) T(\phi_q)||^2$. En déduire que la suite $(T(\phi_n))_{n\in\mathbb{N}}$ ne possède aucune sous-suite convergente.
 - d) Soit $\lambda \in \mathbb{C}$. Quels sont les vecteurs $x \in H$ vérifiant $T(x) = \lambda x$.
- 3. Pour $x \in H$, on pose $S(x) := \sum_{n \in \mathbb{N}} \langle x, \phi_{n+1} \rangle \phi_n$.
 - a) Montrer que l'application linéaire S est continue de H dans H et que |S| = 1.
 - b) Montrer que S n'est pas injective.
 - c) Soit $\lambda \in \mathbb{C}$. On suppose qu'il existe $x \in H \setminus \{0\}$ tel que $S(x) = \lambda x$. Montrer que la suite $(\lambda^n)_{n\in\mathbb{N}}$ appartient à $l^2(\mathbb{N})$.
 - d) En déduire que, pour $\lambda \in \mathbb{C}$, les assertions suivantes sont équivalentes:
 - (i) Il existe $x \in H \setminus \{0\}$, tel que $S(x) = \lambda x$.
 - (ii) $|\lambda| < 1$

- 4. On rappelle que, pour $n \in \mathbb{N}$, on note $e_n : \mathbb{R} \to \mathbb{C}$ l'application définie par $e_n(t) := e^{int}$. Soit H le sous-espace vectoriel fermé de $L^2(\mathbb{T})$ engendré par les $e_n, n \geq 0$.
 - a) Soit $f \in L^2(\mathbb{T})$. Montrer que $f \in H$ si et seulement si $\widehat{f} = \langle f, e_n \rangle = 0 \ \forall n < 0$.
 - b) Pour $f \in L^2(\mathbb{T})$, posons $U(f) = e_1 f$. Montrer que l'on définit ainsi une bijection linéaire U de $L^2(\mathbb{T})$ dans lui-même.
 - c) Montrer que $U(H) \subset H$.
 - d) On note T la restriction de U à H. Calculer T. T est-elle surjective?

Exercice 16 ____

- 1. On se place sur l^2 et on considère l'élément $a=(a_n)$ définit de la façon suivante: $a_n:=\frac{1}{n}$. Calculer la norme de a.
- 2. On considère $T: l^2 \to \mathbb{R}$ telle que $T(x) = \sum_{n \geq 1} \frac{x_n}{n}$. Montrer que T est un opérateur linéaire continue et calculer sa norme d'opérateur.

Exercice 17 _

Soit $A \in L(H, H)$, montrer que $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^*)$

où
$$\mathcal{R}(A) := \{ u \in H | \exists x | u = A(x) \}, \, \mathcal{N}(A) := \{ x \in H | A(x) = 0 \}$$

Montrer que, si de plus $\mathcal{R}(A)$ est fermé, alors $\mathcal{R}(A) = \mathcal{N}(A^*)^{\perp}$

Exercice 18 _

On considère l'opérateur $A \in L(l^2, l^2)$ définit de la façon suivante:

$$Ax := (0, x_1, x_2, ...)$$

Déterminer l'adjoint de A.

Exercice 19

Soient A et B deux convexes fermés non vides dans un espace de Hilbert H. Suppososns qu'au moins l'un des deux ensembles est compact.

Montrer qu'il existe alors une forme $\varphi \in H'$ non nulle et deux réels $c_1 < c_2$ tels que $\varphi(a) \le c_1$ $\forall a \in A$ et $\varphi(b) \ge c_2 \ \forall b \in B$