Feuille de TD n⁰ 6 : Applications des matrices et des systèmes linéaires

Exercice 1 Résoudre suivant les valeurs du paramètre réel u le système d'équations linéaires

$$\begin{cases} x + y + z = 0 \\ 2x - y + z = 2 \\ 3x + 2z = 4 + u \end{cases}$$

Exercice 2 (a) Déterminer les valeurs du paramètre réel α pour lesquelles les vecteurs suivants de \mathbb{R}^5 sont linéarment dépendants :

$$\vec{v}_1 = (0, 1, -1, 0, 1), \qquad \vec{v}_2 = (1, 0, 1, 0, k), \qquad \vec{v}_3 = (-1, 2, -3, 0, 0).$$

(b) Pour les valeurs de α déterminées dans (a), trouver des coefficients $\lambda_1, \lambda_2, \lambda_3$ non tous nuls tels que

$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3 = (0, 0, 0, 0, 0).$$

Exercice 3 Déterminer les valeurs du paramètre réel k pour lesquelles les matrices suivantes forment une famille libre dans $M_2(\mathbb{R})$:

$$A = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 6 \\ 1 & 3 \end{pmatrix}.$$

Exercice 4 On considère les bases $\mathcal{B} := \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ et $\mathcal{C} := \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ de \mathbb{R}^2 . Calculer la matrice de l'application linéaire $f : \mathbb{R}^2 \to \mathbb{R}^2$ donnée par $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix}$ dans les bases \mathcal{B} et \mathcal{C} .

Exercice 5 Soit $\alpha \in \mathbb{R}$ un paramètre réel et soit $T : \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire

$$T(x, y, z) = (x + y, \alpha x + y + z, \alpha x + y + \alpha z).$$

- (a) Déterminer la matrice de T par rapport à la base canonique de \mathbb{R}^3 .
- (b) Déterminer, en fonction du paramètre α , la dimension et une base de Im(T).
- (c) Déterminer, en fonction du paramètre α , la dimension et une base de Ker(T).
- (d) Pour quelles valeurs du paramètre α le vecteur $\vec{v} = (0, 1, -1)$ appartient-il à Im T?
- (e) Supposons que $\alpha = 1$. Déterminer la matrice de T par rapport à la base $\mathcal{B} = \{\vec{u}_1 = (1, 2, -4), \vec{u}_1 = (0, 1, 1), \vec{u}_3 = (1, 0, -7)\}$ de \mathbb{R}^3 .

Exercice 6 Soit V un espace vectoriel de dimension finie sur \mathbb{K} ($=\mathbb{R}$ ou \mathbb{C}) et soit $f: V \to V$ un endomorphisme. On note $f^2 = f \circ f$.

- (a) Supposons que $f^2 = 0$. Montrer que $\text{Im}(f) \subset \text{Ker}(f)$.
- (b) Soient $\mathbb{K} = \mathbb{R}$, $V = \mathbb{R}^3$ et f l'endomorphisme de V de matrice

$$A = \begin{pmatrix} 2 & 0 & -2 \\ -1 & 0 & 1 \\ 2 & 0 & -2 \end{pmatrix}$$

par rapport à la base canonique de \mathbb{R}^3 . Montrer que $f^2 = 0$.

(c) Déterminer une base de Im(f) et la compléter en une base de Ker(f).