Interrogation écrite du 7/11/19

Questions de cours. [5 points]

Les 5 questions suivantes sont indépendantes et \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

- 1. Donner la définition d'un sous-espace vectoriel F d'un \mathbb{K} -espace vectoriel E.
- 2. Donner la définition d'une application linéaire entre deux K-espaces vectoriels.
- 3. Énoncer avec précision le théorème du rang.
- 4. Soient E et F deux \mathbb{K} -espaces vectoriels de dimension $n \in \mathbb{N}^*$ et $f : E \to F$ une application linéaire injective. Montrer que si $\{e_1, \ldots, e_n\}$ est une base de E, alors $\{f(e_1), \ldots, f(e_n)\}$ est une base de F.
- 5. Soit $f: E \to F$ une application linéaire entre deux \mathbb{K} -espaces vectoriels de dimension finie avec $\dim(E) = \dim(F)$. Montrer que f est injective si et seulement si f est surjective.

Exercice 1. [3 points]

On considère la permutation suivante :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 6 & 7 & 1 & 2 & 4 \end{pmatrix}$$

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Calculer σ^{2019} .

Exercice 2. [6 points]

Notons E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} . Soit F l'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} et G l'ensemble des fonctions impaires de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que F et G sont des sous-espaces vectoriels de E.
- 2. Montrer que $F \cap G = \{0_E\}$ où 0_E est la fonction nulle.
- 3. Soit f une fonction de \mathbb{R} dans \mathbb{R} . On considère les deux fonctions φ et ψ , définies pour tout $x \in \mathbb{R}$ par :

$$\varphi(x) = \frac{f(x) + f(-x)}{2}$$
 et $\psi(x) = \frac{f(x) - f(-x)}{2}$.

Montrer que $\varphi \in F$, $\psi \in G$ et $f = \varphi + \psi$.

4. En déduire que $E = F \oplus G$.

Exercice 3. [6 points]

On considère l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degrés inférieurs ou égaux à 2. Soit f l'application suivante :

$$f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}$$

$$P \longmapsto P(1)$$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer une base de Ker(f). Quelle est la dimension de Ker(f)?
- 3. L'application f est-elle injective? surjective?
- 4. Donner la matrice de l'application linéaire f dans la base canonique $\mathcal{B} = \{1, X, X^2\}$ de $\mathbb{R}_2[X]$.

Exercice bonus. [Hors barème, à traiter seulement si tout a déjà été fait]

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f:E\to E$ une application linéaire. Montrer que :

$$E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f) \Longleftrightarrow \operatorname{Im}(f) = \operatorname{Im}(f^2).$$

Cette équivalence reste-t-elle vraie en dimension infinie?