Georgia Tech - Lorraine
Fall 2019
Differential Equations
Math 2552
Last Name:
First Name:
5/12/2019

Final Exam

Total time: 2 hours and 50 minutes.
Total points: 100 points
Please organize your work clearly, neatly, and legibly.
Identify your answers.
Show your work and justify your answers.
If you need extra space, use the back sides of each page.
Please do not use red or pink ink.
Calculators, notes, cell phones, and books are not allowed.
A table of Laplace transforms is provided.
I wish you success in your exam.

EX	points	
1	10	
2	10	
3	12	
4	16	
5	12	
6	12	
7	12	
8	16	
TOT	100	

Exercise $1(2+3+5=10$ points)
Consider the differential equation $y^{\prime}=f(y)$ where $f(y)=-y(y-1)^{2}$.

1. Sketch the graph of $f(y)$ versus y.
2. Determine the critical (or equilibrium) points.
3. Classify each critical point as asymptotically stable, unstable or semistable. Draw the phase line and sketch several graphs of solutions in the ty-plane.
4. $f(y)=-y(y-1)^{2}$ is a cutie function (frolymomial of 3 red degree in y)

The cutie equation $f(y)=0$ has ocutrons $y=0, y=1$ (double)
They are the contersectrons of the graph of f with the y axis.
france $(y-1)^{2} \geq 0$ for all $y \in \mathbb{R}$, the sign of $f(y)$ is determined ty the factor - y. Hence $f(y)>0$ far $y<0$ and $f(y)<0$ fa $y>0$

REM: $f(y)=-y(y-1)^{2}$ has a local minimum between 0 and. The value y at which it occurs can te found by odvring $f^{\prime}(y)=0$:
eramely; $0=f^{\prime}(y)=-(y-1)^{2}-2 y(y-1)$

$$
\begin{aligned}
& =(y-1)[-y+1-2 y] \\
& =(y-1)(1-3 y)
\end{aligned}
$$

gives $y=1$ and $y=1 / 3$. Thus the local
min is at $y=1 / 3$, with $f(1 / 3)=-\frac{4}{27}$
2. Critical norms = constant scutrons of the $D E$

$$
=\text { ooutrons of } f(y)=0
$$

They are $y=0$ and $y=1$
3. $\begin{gathered}f \\ <0 \\ \cdots 0 \\ \cdots \\ \cdots\end{gathered}$
 phase lone

Exercise $2(3+5+2=10$ points)
A hot metal bar is placed in a room at a constant temperature of $20^{\circ} \mathrm{C}$. After 6 minutes the temperature of the bar is measured as $80^{\circ} \mathrm{C}$. Two minutes later, the temperature of the bar has decreasead to $50^{\circ} \mathrm{C}$.
Suppose that Newton's law of cooling applies with transmission coefficient k.

1. Write an initial value problem modeling the temperature of the bar as a function of time.
2. Solve the initial value problem. The transmission coefficient k has to be computed. (Leave your answer in term of \ln.)
3. What was the initial temperature of the metal bar?
4. $y(t)=$ temperature $\left(\sin ^{\circ} \mathrm{C}\right)$ of the metal pare at time t (in sec) Then $\frac{d y}{d t}=-k(y-T)$, where $T=20^{\circ} \mathrm{C}$
$k=$ transmission coefficient
The required IVP is:

$$
\frac{d y}{d t}=-k(y-20) \text { with } y(6)=80 \text { and } y(8)=50
$$

2. Suppose $y \neq 20$ (which is not ocution of the IVP). Then $\frac{1}{y-20} \frac{d y}{d t}=-k$ Imbegrate wet : $\int \frac{1}{y-20} \frac{d y}{\frac{d t}{d y}} d t=-k \int d t$

$$
\begin{aligned}
& \ln |y-20|=-k t+C_{0} \text {, i.e. }|y-20|=e^{C_{0}} e^{-k t} \text {, i.e. } y=20+C e^{-k t}, C=\text { constant } \\
& \left\{\begin{array}{l}
y(t)=20+C e^{-k t} \\
y(6)=80
\end{array}\right.
\end{aligned}
$$

$y(8)=50$ additional value allowing us bo compute k

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 8 0 = 2 0 + c e ^ { - 6 k } } \\
{ 5 0 = 2 0 + c e ^ { - 8 k } }
\end{array} \Rightarrow \left\{\begin{array}{l}
60=c e^{-6 k} \\
30=c e^{-8 k}
\end{array} \Rightarrow e^{2 k}=2 \Rightarrow 2 k=\ln 2 \Rightarrow k=\frac{1}{2} \ln 2\right.\right. \\
& 60=\underbrace{C e^{-3 \ln 2}}_{e^{\ln \left(\frac{1}{2^{3}}\right)}} \Rightarrow 60=C \cdot \frac{1}{2^{3}} \Rightarrow C=60 \cdot 8=480 \\
& y(t)=20+480 e^{-\frac{1}{2}(\ln 2) t}=20+480 \cdot\left(\frac{1}{2}\right)^{t / 2}
\end{aligned}
$$

(3) $y(0)=20+480=500^{\circ} \mathrm{C}$

Exercise $3((1+1)+(5+5)=12$ points $)$

$$
e^{x}+x y-\frac{1}{2} y^{2}=\frac{1}{2}
$$

For each of the following instal value problems (a) and (b): $y^{2}-2 x y-2 e^{x}+1=0$

1. Identify the differential equation (linear, nonlinear, separable, exact), $y=x \pm \sqrt{x^{2}+2 e^{x}-1}$
2. Find the solution (you may leave your solution in an implicit form).
(a) $y^{\prime}=\frac{e^{x}+y}{y-x} \quad$ with initial condition $\quad y(0)=1$.
(b) $\left(x^{2}+1\right) y+x y^{\prime}=x \quad$ with initial condition $\quad y(1)=2$.
(a) Write the DE as $\underbrace{e^{x}+y}_{M(x, y)}+\underbrace{(x-y)}_{N(x, y)} y^{\prime}=0$. Then $\frac{\partial M}{\partial y}=1=\frac{\partial N}{\partial x}$. So the DE is exact.

It is mon linear (fecause of the term $y y^{\prime}$) and not reparable (fecause of the term $x-y$).
We look for $\psi(x, y)$ such that $M=\frac{\partial \psi}{\partial x}$ and $N=\frac{\partial \psi}{\partial y}$. Hence

$$
\psi(x, y)=\int\left(e^{x}+y\right) d x+h(y)=e^{x}+y x+h(y) \text {, and } \frac{\partial \psi}{\partial y}=N(x, y)=x-y \text {, i.e. }
$$

$x-y=x+h^{\prime}(y)$. Hence $h^{\prime}(y)=-y$, i.e. $h(y)=-\frac{1}{2} y^{2}$ (up to a constant)
so $\psi(x, y)=e^{x}+x y-\frac{1}{2} y^{2}$. The general solution is $e^{x}+x y-\frac{1}{2} y^{2}=C, C$ constant.
We fox the value of the constant worming the initial condition $y(0)=1$, which yields $e^{0}-\frac{1}{2}=C$. Thus $e^{x}+x y-\frac{1}{2} y^{2}=\frac{1}{2}$.
TOo get the espelecit ochutron, one can ode this quadratic equatron for y and obtain $y=x \pm \sqrt{x^{2}+2 e^{x}-1}$. The sign " + "has bo le chosen, since $y(0)=1$. $]$
(8) This $D E$ is linear, non sepraeatle and not exact [if we wite it as

$$
[\underbrace{\left(x^{2}+1\right) y-x}_{M(x, y)}]+\underbrace{\prime}_{N(x, y)}=0 \text {, then } \frac{\partial M}{\partial y}=x^{2}+1 \neq 1=\frac{\partial N}{\partial x}]
$$

In standard form: $y^{\prime}+\frac{x^{2}+1}{x} y=1$, with $x \neq 0$,

$$
\int \frac{x^{2}+1}{x} d x=\int x d x+\int \frac{1}{x} d x=\frac{1}{2} x^{2}+\ln x+C \leftarrow\left[\begin{array}{l}
\text { The inutral condition is at } \\
x=1 \text {; so can suppose } x>0
\end{array}\right]
$$

The integrating factor is therefore $\mu(x)=e^{\frac{1}{2} x^{2}+\ln x}=x e^{\frac{1}{2} x^{2}}$
Thus $(\mu(x) y(x))^{\prime}=x e^{\frac{1}{2} x^{2}}$, which grins $\mu(x) y(x)=\int x e^{\frac{1}{2} x^{2}} d x=e^{\frac{1}{2} x^{2}}+C$ ie. $y(x)=\frac{1}{x}+\frac{c}{x} e^{-\frac{1}{2} x^{2}}$. Since $2=y(1)=1+C e^{-\frac{1}{2}}$, we hare $C=e^{1 / 2}$.
Conclusion: $y(x)=\frac{1}{x}\left(1+e^{\frac{1}{2}\left(1-x^{2}\right)}\right)$.

Exercise $4(3+4+3+4+2=16$ points)

A mass of 3 kg is attached to spring with spring constant $75 \mathrm{~N} / \mathrm{m}$. Suppose that there is no damping. The mass is initially displaced 0.2 m downward from its equilibrium position and given an upward velocity of $0.5 \mathrm{~m} / \mathrm{sec}$.
Suppose first that no external force acts on the system.

1. Determine the initial value problem describing the movement of the mass.
2. Find the position of the mass at any time t.
3. Show that the motion is periodic. Determine its period and its amplitude.

Suppose now that a periodic external force $F(t)=10 \cos (5 t) \mathrm{N}$ acts on the system.
4. Find the position of the mass at any time t under the same initial conditions as above.
5. Describe the motion of the mass for large values of t.

1. $\quad m y^{\prime \prime}+k y=0$, ie. $3 y^{\prime \prime}+75 y=0$, i.e. $y^{\prime \prime}+25 y=0, y(0)=0.2, y^{\prime}(0)=-0.5$
2. Characteristic equation: $\lambda^{2}+25=0, \lambda= \pm 5 i$ purely imaginary complex conjugate The general o\&ution of $y^{\prime \prime}+25 y=0$ is
eigenvalues $y(t)=C_{1} \cos (5 t)+C_{2} \sin (5 t), C_{1}, C_{2}$ constants framed by the initial condifons. crore that ; $y^{\prime}(t)=-5 C_{1} \sin (5 t)+5 C_{2} \cos (5 t), s_{0}\left\{\begin{array}{l}0,2=C_{1} \\ -0.5=5 C_{2}\end{array} \Rightarrow\left\{\begin{array}{l}C_{1}=\frac{1}{5} \\ C_{2}=-\frac{1}{10}\end{array}\right.\right.$. The positron of the mass at burse t is $y(t)=\frac{1}{5} \cos (5 t)-\frac{1}{10} \sin (5 t)$
3. $y(t)$ is a periotic function of period $\frac{2 \pi}{5}$ because linear comirnatron of $\cos (5 t)$ and $\sin (5 t)$. The amplitude is $R=\sqrt{\frac{1}{25}+\frac{1}{100}}=\sqrt{\frac{1}{20}}=\frac{1}{2 \sqrt{5}}$
4. The IVP describing the syotern is now $3 y^{\prime \prime}+75 y=10 \cos (5 t)$, with the same inutral conditions $y(0)=0.2$ and $y^{\prime}(0)=-0.5$ The general soutrons is of the farm $y(t)=y_{c}(t)+y(t)$ where $y_{c}(t)=C_{1} \cos (5 t)+C_{2} \operatorname{som}(5 t)$ as \ln 2. and $y(t)$ a particular solution. Apply the method of undetermenied caffricients. Since $\cos (5 t)$ is a odutron of the associated
$Y(t)=t(A \cos (5 t)+B \operatorname{sim}(5 t))$. Then $\left\{\begin{array}{l}y^{\prime}(t)=A \cos (5 t)+B \operatorname{sim}(5 t)+5 t(-A \sin (5 t)+B \cos (5 t)) \\ y^{\prime \prime}(t)=2(-5 A \sin (5 t)+5 B \cos (5 t))+25 t(-A \cos (5 t)-B \operatorname{sim}(5 t))\end{array}\right.$ Inserting into the DE:
$3 y^{\prime \prime}(t)+75 y(t)=10 \cos (5 t) \Leftrightarrow-30 \mathrm{Asin}(5 t)+30 B \cos (5 t)-75$ At cos $(5 t)-75 \mathrm{BL} / \sin (5 t)+$
So $A=0, B=1 / 3$, ie. $Y(t)=\frac{1}{3} t \sin (5 t)$
$75 A t \cos (5 t)+75 \beta t \sin (5 t)=10 \cos (5 t)$
$y(t)=C_{1} \cos (5 t)+C_{2} \sin (5 t)+\frac{1}{3} \operatorname{tsin}(5 t)$
$\left.y^{\prime}(t)=-5 c_{1} \sin (5 t)+5 C_{2} \cos (5 t)+\frac{1}{3} \sin (5 t)+\frac{5}{3} t \cos (5 t)\right] \Rightarrow\left\{\begin{array}{l}C_{1}=5 \\ c_{2}=-\frac{1}{10}\end{array}\right.$ as Refou
Thus $y(t)=\frac{1}{5} \cos (5 t)-\frac{1}{10} \sin (5 t)+\frac{1}{3} \operatorname{tsin}(5 t)$
5. Jerwodic osciel trons with semi-prwod $\frac{2 \pi}{5}$, hit with increarmg amplitude $\frac{1}{3}\left(\frac{\pi}{2}+2 \pi n\right) \cdot \frac{1}{5}=\frac{\pi}{30}+\frac{2 \pi m}{15} \rightarrow+\infty$ as $n \rightarrow+\infty$.

Exercise $5((3+3)+6=12$ points)

1. For each the following initial value problems, determine the largest possible interval on which the solution exists and is unique:

$$
\begin{align*}
& t(t-4) \frac{d y}{d t}-2 t y=(t-4)^{2}, \quad y(5)=1 \tag{1}\\
& t(t-4) \frac{d y}{d t}-2 t y=\frac{1}{\sin t}, \quad y(5)=1 \tag{2}
\end{align*}
$$

Justify your answer. (Do not attempt to solve the differential equations.)
2. Using the method of the integrating factor, solve the initial value problem (1).

1. Writ the DE in the form

$$
\begin{align*}
& \frac{d y}{d t}-\frac{2}{t-4} y=\frac{t-4}{t} \tag{1}\\
& \frac{d y}{d t}-\frac{2}{t-4} y=\frac{1}{t(t-4) \sin t} \tag{2}
\end{align*}
$$

(1) and (2) are linear DE, now in standard form $y^{\prime}(t)+h(t) y(t)=g(t)$ where $\rho(t)=-\frac{2}{t-4}$ and $g(t)=\frac{t-4}{t}$ fa (1) and $g(t)=\frac{1}{t(t-4) \sin t}$
The solution of the DE exciots and is unique in the largest own interval I containing $t_{0}=5 \mathrm{~cm}$ which roth $\mu(t), g(t)$ are continuous.
(1): $\left.\begin{array}{l}\mu(t) \text { is conhrnuous on }(-\infty, 4) \cup(4,+\infty) \\ g(t) \text { on }(-\infty, 0) \cup(0,+\infty)\end{array}\right\} \Rightarrow I=(4,+\infty)$
(2) $\mu(t)$ is continuous on $(-\infty, 4) \cup(4,+\infty)$
$g(t)$ is continuous on $(-\infty, 0) \cup(0,4) \cup(4,+\infty) \backslash\{k \pi ; k \in \mathbb{I}\}\} \Rightarrow I=(4,2 \pi)$
2. The integrating factor is $\mu(t)=e^{-2 \int \frac{1}{t-4} d t}=e^{-2 \ln (t-4)}=e^{\ln \frac{1}{(t-4)^{2}}}=\frac{1}{(t-4)^{2}}$

$$
(\mu(t) y(t))^{\prime}=\frac{(t-4)}{t(t-4)^{2}}=\frac{1}{t(t-4)}=\frac{A}{t}+\frac{B}{t-4}=-\frac{1}{4} \frac{1}{t}+\frac{1}{4} \frac{1}{t-4}
$$

i.e. $\mu(t) y(t)=-\frac{1}{4} \int \frac{1}{t} d t+\frac{1}{4} \int \frac{1}{t-4} d t=-\frac{1}{4} \ln |t|+\frac{1}{4} \ln |t-4|+C=\frac{1}{4} \ln \left|\frac{t-4}{t}\right|+C$

Hence $y(t)=(t-4)^{2}\left[\frac{1}{4} \ln \left|\frac{t-4}{t}\right|+C\right], C$ coolant

$$
1=y(5)=\frac{1}{4} \ln \left(\frac{1}{5}\right)+C \Rightarrow C=1+\frac{1}{4} \ln 5 \text {. Thus } y(t)=(t-4)^{2}\left[\frac{1}{4} \ln \left|\frac{t-4}{t}\right|+1+\frac{1}{4} \ln 5\right]
$$

$=(t-4)^{2}\left[\frac{1}{4} \ln \left(\frac{t-4}{t}\right)+1+\frac{1}{4} \ln 5\right]$ Recause this solution is for $t \in(4,+\infty)$, so $\frac{t-4}{t}>0$

Exercise $6(2+10=12$ points)
Consider the piecewise defined function $g(t)= \begin{cases}2 t & \text { if } 0 \leq t<1 \\ 0 & \text { if } t \geq 1\end{cases}$

1. Express $g(t)$ in terms of unit step functions.
2. Find the solution of the initial value problem

$$
y^{\prime \prime}+y^{\prime}=g(t) \quad \text { with } \quad y(0)=0 \quad \text { and } \quad y^{\prime}(0)=0
$$

1. $g(t)=2 t\left(u_{0}-u_{1}\right)=2 t-2 t u_{1}(t)$
2. erotici frost that

$$
\begin{aligned}
\mathcal{L}\{g\}(s) & =2 \mathcal{L}\{t\}(s)-2 \mathcal{L}\left\{t u_{1}(t)\right\}(s) \\
& =\frac{2}{s^{2}}-2 \mathcal{L}\{t+1\}(s) e^{-s} \\
& =\frac{2}{s^{2}}-2\left(\frac{1}{s^{2}}+\frac{1}{s}\right) e^{-s} \quad \text { oas }>0
\end{aligned}
$$

Apply the Laplace transform to roth sides of the DE:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}\right\}(s)+\mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{g\}(s) \text {, Let } y=\mathcal{L}\{y\} \\
& (s^{2} y(s)-\underbrace{y(c)}_{=0}-\underbrace{y^{\prime}(0)}_{=0})+(s^{y}(s)-\underbrace{y(0)}_{=0})=\mathcal{L}\{g\}(s), \text { i.e. } s(s+1) y(s)=\mathcal{L}\{g\}(s) \text {, Thus } \\
& s(s+1) y(s)=\frac{2}{s^{2}}-2\left(\frac{1}{s^{2}}+\frac{1}{s}\right) e^{-s}=\frac{2}{s^{2}}-2 \frac{s+1}{s^{2}} e^{-s}, \text { lie. } y(s)=\frac{2}{s^{3}(s+1)}-\frac{2}{s^{3}} e^{-s}
\end{aligned}
$$

Partial fraction decomposition: $\frac{1}{s^{3}(s+1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s^{3}}+\frac{D}{s+1}=\frac{1}{s}-\frac{1}{s^{2}}+\frac{1}{s^{3}}-\frac{1}{s+1}$ By linearity of \mathcal{L}^{-1} :

$$
y=\mathcal{L}^{-1}\{y\}=2\left[\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s^{3}}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}\right]-2 \mathcal{L}^{-1}\left\{\frac{1}{s^{3}} e^{-s}\right\}
$$

i.c. $y(t)=2\left(1-t+\frac{1}{2} t^{2}-e^{-t}\right)-2 h(t-1) u_{1}(t)$ where $\alpha\{h\}(s)=\frac{1}{s^{3}}$, i.e. $h(t)=\frac{1}{2} t^{2}$ $=2\left(1-t+\frac{1}{2} t^{2}-e^{-t}\right)-(t-1)^{2} u_{1}(t)$

Exercise $7(6+6=12$ points $)$

1. Find the Laplace transform of

2. Determine the inverse Laplace transform of the function

$$
F(s)=\frac{e^{-2 s}}{(s+1)^{2}}+\frac{1}{s^{2}+2 s+2}
$$

2. $\quad \mathcal{L}\{h\}(s) e^{-2 S}=\mathcal{L}\left\{h(t-2) \mu_{2}(t)(s\right.$

$$
\mathcal{L}\{h\}(s)=\frac{1}{(s+1)^{2}}=\left.\frac{1}{s^{2}}\right|_{s \rightarrow s+1} ^{2} \Rightarrow h(t)=t e^{-t}
$$

$$
h(t-2)=(t-2) e^{-(t-2)}
$$

$$
\frac{1}{s^{2}+2 s+2}=\frac{1}{(s+1)^{2}+1}=\mathcal{L}\left\{e^{-t} \sin (t)\right\}(s)
$$

Thus $\mathcal{L}^{-1}\{F\}(t)=\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{(s+1)^{2}}\right\}(t)+\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+2 s+2}\right\}(t)$

$$
=(t-2) e^{-(t-2)} u_{2}(t)+e^{-t} \sin (t)
$$

Exercise $8(2+2+12=16$ points)
Consider the following system of differential equations:

$$
\begin{aligned}
\frac{d x}{d t} & =x(2+x-y) \\
\frac{d y}{d t} & =y(1+x)
\end{aligned}
$$

1. Find all the critical points of the system.
2. Compute the Jacobian matrix for the system.
3. For each critical point, find the corresponding approximating linear system. Find the eigenvalues of each linear system and classify each critical point according to type (nodal, spiral, center,...) and stability (asymptotically stable, stable, or unstable).
4. Certrical pormos are the odutrons of $\left\{\begin{array}{l}d x / d t=0 \\ d y / d t=0\end{array}\right.$, live. $\left\{\begin{array}{l}F(x, y)=0 \\ G(x, y)=0\end{array}\right.$ where

$$
\begin{aligned}
& \begin{array}{l}
F(x, y)=x(2+x-y) \\
G(x, y)=y(1+x)
\end{array} . \quad\left\{\begin{array}{l}
x(2+x-y)=0 \\
y(1+x)=0<y=0
\end{array} \quad \text { ide. }(0,0),(-2,0),(-1,1)\right. \\
& \text { are the cutrcal porionts }
\end{aligned}
$$

2. $J(x, y)=\left(\begin{array}{ll}F_{x} & F_{y} \\ G_{x} & G_{y}\end{array}\right)=\left(\begin{array}{cc}2+2 x-y & -x \\ y & 1+x\end{array}\right)$
3. $(0,0)$: approximating linear systern $\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}$

$$
\left|\begin{array}{cc}
2-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right|=(\lambda-2)(\lambda-1)=0 . \Rightarrow \lambda_{1}=1, \lambda_{2}=2
$$

Two position real district eigenvalues, so, the critucal forme $(0,0)$ is is a mode and is unstable
$(-2,0) \quad \frac{d}{d t}\binom{u}{w}=\left(\begin{array}{cc}-2 & 2 \\ 0 & -1\end{array}\right)\binom{u}{w} \quad$ where $\left\{\begin{array}{l}u=x+2 \\ w=y\end{array}\right.$
$\left|\begin{array}{cc}-2-\lambda & 2 \\ 0 & -1-\lambda\end{array}\right|=(\lambda+2)(\lambda+1)=0 \Leftrightarrow \lambda_{1}=-1, \lambda_{2}=-2$. Two negatron dish mot eigenvalues
So $(-2,0)$ is a mode and is asymptotically stable.
$(-1,1) \quad \frac{d}{d t}\binom{u}{w}=\left(\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right)\binom{u}{w}$ where $\left\{\begin{array}{l}u=x+1 \\ w=y-1\end{array}\right.$

$$
\begin{aligned}
& \left|\begin{array}{cc}
-1-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=\lambda(\lambda+1)-1=\lambda^{2}+\lambda-1 \\
& \lambda^{2}+\lambda-1 \quad 0 \Leftrightarrow \lambda=\frac{-1 \pm \sqrt{1+4}}{2} \text { i.e. } \quad 9 \quad \lambda_{1}=\frac{-1+\sqrt{5}}{2}>0>\lambda_{2}=\frac{-1-\sqrt{5}}{2}
\end{aligned}
$$

$(-1,1)$ is a saddle poimb and is unstable.

