Section 1.3: Classification of Differential Equations

Classification allows us to determine which methods we can use to solve a DE.

- Number of independent variables:
 - Ordinary Differential Equations (ODE)
 - Partial Differential Equations (PDE)
- Order of an ODE
- Linearity:
 - Linear Differential Equations
 - Homogeneous Linear Differential Equations
 - Standard form

.

Number of independent variables

- Ordinary Differential Equation (ODE): the functions in the DE depend on a single independent variable.
- **Partial Differential Equation (PDE)**: the functions in the DE depend on more than one independent variable.

Remark: The DE as defined at the beginning of the course are in fact ODE. This course focuses on ODEs only. When talking about a DE, we shall always mean an ODE.

Examples

(1) Newton's Law of Cooling

$$\frac{du}{dt} = -k(u-T)$$

is an example of an ODE. The unique independent variable is t.

(2) The heat equation

$$\frac{\partial u(x,t)}{\partial t} = D \frac{\partial^2 u(x,t)}{\partial x^2}$$

is an example of a PDE.

Model of the temperature u(x, t) of a metal rod. Two independent variables: *t*=time, *x* position along the rod

The Order of an ODE

Definition

The **order** of an ODE is the highest degree derivative which appears in the equation.

Examples

- (1) Newton's Law of Cooling u' = -k(u T) has order 1.
- (2) The ODE $y''' + 2e^t y'' + yy' = t^4$ has order 3.
- (3) $y'' + (y')^{10} = 4$ has order 2.

Remark: This course mostly focuses on ODE's of order 1 and 2.

Linearity / Homogeneity

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- $a_0(t)$, $a_1(t)$, ..., $a_n(t)$ and g(t) are functions of t which are given (called the **coefficients**)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.**

E.g.
$$y^{(1)} = y', y^{(2)} = y''...$$

A D A A B A A B A A B A B B

If g(t) = 0 for all *t*, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**. Examples

- (1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.
- (2) $t^3y'' + cos(t)y' = y$ is linear, of order 2, homogeneous.
- (3) yy'' + y' = 0 is non-linear, of order 2
- (4) $y + y' = \sin(y + t)$ is non-linear, of order 1.

First order linear ODEs

A first order linear ODE is of the form

$$a_0(t)\frac{dy}{dt}+a_1(t)y=g(t)$$

If $a_0(t) = 0$ for all t, there is no DE (no derivative)! If not, for all t so that $a_0(t) \neq 0$, we can divide both sides of the DE by $a_0(t)$:

$$\frac{dy}{dt} + \frac{a_1(t)}{a_0(t)}y = \frac{g(t)}{a_0(t)}$$

Set

$$p(t) = \frac{a_1(t)}{a_0(t)}$$
 and $h(t) = \frac{g(t)}{a_0(t)}$

Then the above equation can be put in the standard form (or normal form)

$$\frac{dy}{dt} + p(t)y = h(t)$$

Example

 $t^{3}y' + ty = y + t$ is linear, of order 1, nonhomogeneous. For all $t \neq 0$:

$$y' + \frac{t-1}{t^3}y = \frac{1}{t^2}$$
 (standard form)