Section 1.3: Classification of Differential Equations

Classification allows us to determine which methods we can use to solve a DE.

- Number of independent variables:
\diamond Ordinary Differential Equations (ODE)
\diamond Partial Differential Equations (PDE)
- Order of an ODE
- Linearity:
\diamond Linear Differential Equations
\diamond Homogeneous Linear Differential Equations
\diamond Standard form

Number of independent variables

- Ordinary Differential Equation (ODE): the functions in the DE depend on a single independent variable.
- Partial Differential Equation (PDE): the functions in the DE depend on more than one independent variable.

Remark: The DE as defined at the beginning of the course are in fact ODE. This course focuses on ODEs only. When talking about a DE, we shall always mean an ODE.

Examples

(1) Newton's Law of Cooling

$$
\frac{d u}{d t}=-k(u-T)
$$

is an example of an ODE. The unique independent variable is t.
(2) The heat equation

$$
\frac{\partial u(x, t)}{\partial t}=D \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

is an example of a PDE.
Model of the temperature $u(x, t)$ of a metal rod. Two independent variables: $t=$ time, x position along the rod

The Order of an ODE

Definition

The order of an ODE is the highest degree derivative which appears in the equation.

Examples

(1) Newton's Law of Cooling $u^{\prime}=-k(u-T)$ has order 1 .
(2) The ODE $y^{\prime \prime \prime}+2 e^{t} y^{\prime \prime}+y y^{\prime}=t^{4}$ has order 3 .
(3) $y^{\prime \prime}+\left(y^{\prime}\right)^{10}=4$ has order 2 .

Remark: This course mostly focuses on ODE's of order 1 and 2.

Linearity / Homogeneity

Definition

An n-th order linear ODE is an ODE of the form:

$$
a_{0}(t) y^{(n)}(t)+a_{1}(t) y^{(n-1)}(t)+\cdots+a_{n}(t) y(t)=g(t)
$$

where

- $a_{0}(t), a_{1}(t), \ldots, a_{n}(t)$ and $g(t)$ are functions of t which are given (called the coefficients)
- $y(t)$ is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. E.g. $y^{(1)}=y^{\prime}, y^{(2)}=y^{\prime \prime} \ldots$

If $g(t)=0$ for all t, we say that the linear ODE is homogeneous.
An ODE which is not of the above form is called non-linear.

Examples

(1) Newton's Law of Cooling $\frac{d}{d t} u(t)=-k(u-T)$ is linear, has order 1 , is nonhomogeneous if $T \neq 0$.
(2) $t^{3} y^{\prime \prime}+\cos (t) y^{\prime}=y$ is linear, of order 2, homogeneous.
(3) $y y^{\prime \prime}+y^{\prime}=0$ is non-linear, of order 2
(4) $y+y^{\prime}=\sin (y+t)$ is non-linear, of order 1 .

First order linear ODEs

A first order linear ODE is of the form

$$
a_{0}(t) \frac{d y}{d t}+a_{1}(t) y=g(t)
$$

If $a_{0}(t)=0$ for all t, there is no DE (no derivative)!
If not, for all t so that $a_{0}(t) \neq 0$, we can divide both sides of the DE by $a_{0}(t)$:

$$
\frac{d y}{d t}+\frac{a_{1}(t)}{a_{0}(t)} y=\frac{g(t)}{a_{0}(t)}
$$

Set

$$
p(t)=\frac{a_{1}(t)}{a_{0}(t)} \quad \text { and } \quad h(t)=\frac{g(t)}{a_{0}(t)}
$$

Then the above equation can be put in the standard form (or normal form)

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

Example

$t^{3} y^{\prime}+t y=y+t$ is linear, of order 1 , nonhomogeneous.
For all $t \neq 0$:

$$
y^{\prime}+\frac{t-1}{t^{3}} y=\frac{1}{t^{2}} \quad(\text { standard form })
$$

