Chapter 2: First order ODEs

$$
\frac{d y}{d x}=f(x, y)
$$

where

- x is the independent variable
- y is the unknown function
- f is a function of two variables

Two main classes of first order ODE for which where are general methods to find solutions:

- separable equations
- linear differential equations

A solution is a differentiable function $y=\phi(x)$ which satisfies the DE for all x is some interval (we will be more precise on this).

Section 2.1: Separable equations

Definition

Consider the first order DE

$$
\frac{d y}{d x}=f(x, y)
$$

where y is the unknown function, x is the independent variable.
The DE is called separable if the function f can be split as a product

$$
f(x, y)=p(x) q(y)
$$

where

- p is a function depending on x only,
- q is a function depending on y only.

Examples

- a, b constants. Then $\frac{d y}{d x}=a y+b$ is separable $\quad[H e r e ~ p(x)=1, q(y)=a y+b]$
e.g. Newton's Law of Cooling with constant ambient temperature $T_{0}: u^{\prime}=-k\left(u-T_{0}\right)$
- $y^{\prime}=-x y^{2}$ of order 1, non-linear, separable
- $\frac{d y}{d x}=y+x$ of order 1 , linear, not separable.

General method to solve a separable DE: $\frac{d y}{d x}=p(x) q(y)$

- If $q(y)=0$ then $f(x, y)=0$ and the solutions are constant functions.
- So suppose $q(y) \neq 0$ (for certain values of y). Divide both sides of the DE by $q(y)$ and get

$$
\frac{1}{q(y)} \frac{d y}{d x}=p(x)
$$

- Integrate both sides with respect to x :

$$
\int \frac{1}{q(y)} \frac{d y}{d x} d x=\int p(x) d x
$$

- Use the change of variables formula (equivalently, the relation $d y=\frac{d y}{d x} d x$ for the differential $d y$ of y in terms of the differential $d x$) and get:

$$
\int \frac{1}{q(y)} d y=\int p(x) d x
$$

Let $Q(y)$ and $P(x)$ be antiderivatives of $\frac{1}{q(y)}$ and $p(x)$, respectively, i.e.

$$
Q^{\prime}(y)=\frac{1}{q(y)} \quad \text { and } \quad P^{\prime}(x)=p(x)
$$

Then

$$
\int \frac{1}{q(y)} d y=\int p(x) d x
$$

is equivalent to

$$
Q(y)=P(x)+C, \quad C=\text { constant }
$$

These are implicit solutions.
To find explicit solutions $y=\phi(x)$ one needs to solve $Q(y)=P(x)+C$ for y. (this might be very difficult or even not possible).

Separable equations: examples

- Newton's law of cooling with constant ambient temperature T_{0} : see Chapter 1.
- Solve $y^{\prime}=-x y^{2}$
- Determine the integral curves of the DE: $y y^{\prime}=-x$. Solve the initial value problem $y y^{\prime}=-x, y(0)=1$ and determine the interval in which the solution exists.

