## First order linear ODE's: integrating factors

Consider the linear first order ODE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

Idea: multiply both sides of the ODE by a positive function $\mu(t)$

$$
\mu(t) y^{\prime}+\mu(t) p(t) y=\mu(t) h(t)
$$

such that the left-hand side is the derivative of the product $\mu(t) y(t)$.
In other words, we want:

$$
\mu^{\prime}(t)=\mu(t) p(t)
$$

to get:

$$
(\mu(t) y)^{\prime}=\mu(t) h(t)
$$

We want: $\mu^{\prime}(t)=\mu(t) p(t)$.
So we must have:

$$
\frac{\mu^{\prime}(t)}{\mu(t)}=p(t)
$$

and therefore (by integrating both sides):

$$
\mu(t)=e^{\int p(t) d t}
$$

Remark: we can choose one antiderivative. The additive constant does not matter in the end (try it!)
$\mu$ is called the integrating factor.
The original DE reads now as follows:

$$
(\mu(t) y)^{\prime}=\mu(t) h(t)
$$

Integrate it.
Conclusion: the solution of the DE: $\frac{d y}{d t}+p(t) y=h(t)$ is

$$
y=\frac{1}{\mu(t)}\left(\int \mu(t) h(t) d t+\text { constant }\right)
$$

Remark (disadvantage of this method): In general, $\int \mu(t) h(t) d t$ cannot be expressed in terms of elementary functions. One often uses numerical methods to approximate it.

## The method of integrating factors

The procedure for solving a first order linear DE

$$
\frac{d y}{d t}+p(t) y(t)=h(t)
$$

(1) Put the given DE in standard form $y^{\prime}+p(t) y=h(t)$ (if necessary).
(2) Calculate the integrating factor $\mu(t)=e^{\int p(t) d t}$
(3) Multiply the DE by $\mu(t)$ and write it in the form $[\mu(t) y(t)]^{\prime}=\mu(t) h(t)$.
(4) Integrate
(5) Solve for $y$

## An example

Consider the first order linear DE

$$
y^{\prime}+2 t y=2 e^{-(t-1)^{2}}
$$

(1) Solve the DE using the method of the integrating factor.
(2) Determine the solution with the initial condition $y(0)=1$.
(3) Use the general solution to determine how solutions behave as $t \rightarrow+\infty$.

