Section 2.4: Difference between linear and nonlinear ODE

In this section we are concerned with the two following questions:

Given the initial value problem (IVP):

$$
\begin{aligned}
& \frac{d y}{d t}=f(t, y) \\
& y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

(1) existence: does the IVP have a solution, and if so, where?
(2) uniqueness: is the solution unique?

We explore these questions for linear and non-linear cases.

The linear case

Theorem (Theorem 2.4.1)

Let $I=(\alpha ; \beta)$ be an open interval and let $t_{0} \in I$.
Consider the 1st order linear ODE in standard form:

$$
y^{\prime}+p(t) y=g(t)
$$

Suppose that both $p(t)$ and $g(t)$ are continuous functions of $t \in I$.
Then there exists a unique function $y=\phi(t)$ satisfying the $D E$ on I with the initial value condition

$$
y\left(t_{0}\right)=y_{0}
$$

(where y_{0} is an arbitrarily fixed initial value).
Idea of the proof. The method of integrating factor provides the explicit solution. See textbook.

Example: $\left(t^{2}-4\right) y^{\prime}+t y=e^{t}$ with $y(1)=1$
Determine (without solving the DE) an interval in which the solution of the IVP exists.

The non-linear case

Theorem (Theorem 2.4.2)

Let $R=\{(t, y): \alpha<t<\beta, \gamma<y<\delta\}$ be an open rectangle in the ty-plane and let $\left(t_{0}, y_{0}\right) \in R$. Consider the first order $D E: y^{\prime}=f(t, y)$
Suppose that both f and $\frac{\partial f}{\partial y}$ are continuous on R.
Then, in some interval $I_{0}=\left(t_{0}-h, t_{0}+h\right)$ contained in (α, β), there exists a unique function $y=\phi(t)$ satisfying the $D E$ on I with the initial condition $y\left(t_{0}\right)=y_{0}$.


```
Example:
Does \(y^{\prime}=y^{1 / 3}, y(0)=0\)
satisfy the conditions of this theorem?
```

[^0]
Linear vs non-linear case

Remark: Take $f(t, y)=-p(t) y+g(t)$ so that $\frac{\partial f}{\partial y}=-p(t)$. Then $p(t), g(t)$ are continuous in $t \in l$ if and only if $f, \frac{\partial f}{\partial y}$ are continuous in $(t, y) \in R=I \times \mathbb{R}$.

- The 1st order ODE $y^{\prime}+p(t) y=g(t)$ has the following properties.
- If the p and g are continuous, there is a general solution (containing an arbitrary constant) that represents all solutions of the ODE.
- The general solution (and hence every particular solution) has an explicit expression.
- Points where a solution is discontinuous can be found without solving the ODE (they are identified from the coefficients).
- A nonlinear first order ODE does not necessarily have any of the above properties.

[^0]: Illustration of R in Theorem 2.4.2 (Brennan \& Boyce, Differential Equations, p. 72)

