Section 2.7: Substitution methods

First order ODEs that we can transform by a change of variables into DEs we can solve:

Homogeneous DE <u>change of variable</u> separable DE
 Bernoulli equation <u>change of variable</u> linear DE

A function f(x, y) is said to be **homogeneous of degree** k if

 $f(\lambda x, \lambda y) = \lambda^k f(x, y) \quad \forall \lambda \in \mathbb{R}, \ \forall (x, y) \text{ in the domain of } f$

Examples:

(a) $f(x, y) = x^2 + xy + y^2$ is homogeneous of degree 2.

(b) $f(x,y) = \frac{xy}{x^2 + y^2}$

A function f(x, y) is said to be **homogeneous of degree** k if

 $f(\lambda x, \lambda y) = \lambda^k f(x, y) \quad \forall \lambda \in \mathbb{R}, \ \forall (x, y) \text{ in the domain of } f$

Examples:

- (a) $f(x, y) = x^2 + xy + y^2$ is homogeneous of degree 2.
- (b) $f(x, y) = \frac{xy}{x^2 + y^2}$ is homogeneous of degree 0. (c) $f(x, y) = \frac{xy}{x^2 + y^2}$

(c)
$$f(x, y) = \frac{xy}{x^2 + y}$$

A function f(x, y) is said to be **homogeneous of degree** k if

 $f(\lambda x, \lambda y) = \lambda^k f(x, y) \quad \forall \lambda \in \mathbb{R}, \ \forall (x, y) \text{ in the domain of } f$

Examples:

- (a) $f(x, y) = x^2 + xy + y^2$ is homogeneous of degree 2.
- (b) $f(x,y) = \frac{xy}{x^2 + y^2}$ is homogeneous of degree 0.

(c)
$$f(x,y) = \frac{xy}{x^2 + y}$$
 is not homogeneous.

A function f(x, y) is said to be **homogeneous of degree** k if

 $f(\lambda x, \lambda y) = \lambda^k f(x, y) \quad \forall \lambda \in \mathbb{R}, \ \forall (x, y) \text{ in the domain of } f$

Examples:

(a)
$$f(x, y) = x^2 + xy + y^2$$
 is homogeneous of degree 2.

(b)
$$f(x, y) = \frac{xy}{x^2 + y^2}$$
 is homogeneous of degree 0.
(c) $f(x, y) = \frac{xy}{x^2 + y}$ is not homogeneous.

Suppose f(x, y) is homogeneous of degree k. For $x \neq 0$ we can factor $(x, y) = x(1, \frac{y}{x})$. We get $f(x, y) = x^k f(1, \frac{y}{x})$. Example: $x^2 + xy + y^2 = x^2 (1 + \frac{y}{x} + (\frac{y}{x})^2)$. Similarly, for $y \neq 0$ we can factor $(x, y) = y(\frac{x}{y}, 1)$. We get $f(x, y) = y^k f(\frac{x}{y}, 1)$. Example: $x^2 + xy + y^2 = y^2 ((\frac{x}{y})^2 + \frac{x}{y} + 1)$.

First order homogeneous DE

Definition

A first order differential equation is called homogeneous if it is of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$

where M and N are homogeneous of the same degree.

Remark: a more appropriate name would be first order DE with homogeneous coefficients (not to be confused with the homogeneous linear DEs).

Substitution Method 1: For $x \neq 0$:

- rewrite the coefficients M and N as functions of $\frac{y}{y}$
- substitute $u = \frac{y}{x}$ i.e. y = xu. By the Chain Rule: $\frac{dy}{dx} = u + x \frac{du}{dx}$
- substitute in the DE and get a separable DE
- solve the equation by method of separable variables (section 2.1).

Example:
$$(x^2 + xy + y^2) - x^2 \frac{dy}{dx}$$

・ロン ・雪 と ・ ヨン・

Substitution Method 2:

For
$$M(x, y) + N(x, y) \frac{dy}{dx} = 0$$
 and $y \neq 0$:
• replace $\frac{dy}{dx}$ with $\frac{dx}{dy}$ in the DE:
 $M(x, y) \frac{dx}{dy} + N(x, y) = 0$

• rewrite the coefficients *M* and *N* as functions of $\frac{x}{y}$

• substitute
$$v = \frac{x}{y}$$
 i.e. $x = yv$. By the Chain Rule: $\frac{dx}{dy} = v + y\frac{dv}{dy}$

- substitute in the DE and get a separable DE
- solve the equation by method of separable variables (section 2.1).

Example:
$$(x^2 + xy + y^2)\frac{dy}{dx} - y^2 = 0$$

Bernoulli differential equation

Definition

A Bernoulli differential equation is of the form

$$\frac{dy}{dt} + q(t)y = r(t)y^n$$

where *n* is any real number.

Remark: A Bernoulli DE is linear if and only if n = 0 or 1.

Example: $t^2y' - ty + y^2 = 0$

Divide all terms by t^2 so that DE becomes: $y' - \frac{1}{t}y + \frac{1}{t^2}y^2 = 0$. This is a Bernoulli DE, with $q(t) = -\frac{1}{t}$, $r(t) = -\frac{1}{t^2}$ et n = 2. Substitution method:

The substitution $u = y^{1-n}$ reduces a Bernoulli DE to a linear equation.