Section 3.2: Systems of two first-order linear DE

Main topics:

- system of two first order linear differential equations
- matrix notation
- direction fields and phase portraits,
- examples of second order differential equations.

Definition

A system of two first order linear differential equations has the form:

$$\begin{cases} \frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t) \\ \frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t) \end{cases}$$

where

- p₁₁, p₁₂, p₂₁, p₂₂ and g₁, g₂ are given functions of t, defined on a same open interval I
- x = x(t), y = y(t) are two unknown functions of t (the state variables).

A solution of (S) consists of two differentiable functions x = x(t), y = y(t) satisfying (S) in some interval $I_0 \subseteq I$.

The system (S) and two initial conditions $x(t_0) = x_0$ and $y(t_0) = y_0$ form an **initial** value problem (IVP).

Theorem (Theorem 3.2.1)

Suppose that the functions p_{11} , p_{12} , p_{21} , p_{22} , g_1 , g_2 are continuous on an open interval *I* containing t_0 . Then the IVP has a unique solution x = x(t), y = y(t) on *I*.

э

ヘロア 人間 アメヨア 人口 ア

(S)

System notation:

$$\begin{cases} \frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t) \\ \frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t) \end{cases}$$

Matrix notation:

$$\Leftrightarrow \mathbf{X}'(t) = \mathbf{P}(t)\mathbf{X}(t) + g(t)$$

Initial conditions:

 $x(t_0) = x_0, y(t_0) = y_0 \qquad \Leftrightarrow \quad \mathbf{X}(t_0) = \mathbf{X}_0$ where:

•
$$\mathbf{X}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 = vector of unknown functions (the state vector).
• $\mathbf{X}'(t) = \frac{d\mathbf{X}}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}$, $\underbrace{P(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t) \end{pmatrix}}_{\text{matrix of coefficients}}$, $\underbrace{g(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix}}_{\text{the nonhomogeneous term, or input or forcing function}$

Definition

The system is called **homogeneous** if g(t) = 0 for all t (i.e. $g_1(t) = g_2(t) = 0$ for all t).

э

< 日 > < 同 > < 回 > < 回 > < □ > <

Example

Consider the IVP:

$$\begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t}y - e^{2t-1} \end{cases}$$

with initial condition x(1) = 1 and y(1) = 0.

• In matrix notation, the IVP is:

$$\mathbf{X}'(t) = P(t)\mathbf{X}(t) + g(t),$$

where $P(t) = \begin{pmatrix} t & -3t^2 \\ \ln(t) & 1/t \end{pmatrix}$ and $g(t) = \begin{pmatrix} \sin(t) \\ -e^{2t-1} \end{pmatrix}$, with initial condition
 $\mathbf{X}(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$

• The theorem of existence and uniqueness of solutions tells us that a solution x = x(t), y = y(t) exists and is unique on the open interval

Example

Consider the IVP:

$$\begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t}y - e^{2t-1} \end{cases}$$

with initial condition x(1) = 1 and y(1) = 0.

• In matrix notation, the IVP is:

$$\mathbf{X}'(t) = P(t)\mathbf{X}(t) + g(t),$$

where $P(t) = \begin{pmatrix} t & -3t^2 \\ \ln(t) & 1/t \end{pmatrix}$ and $g(t) = \begin{pmatrix} \sin(t) \\ -e^{2t-1} \end{pmatrix}$, with initial condition $\mathbf{X}(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$

• The theorem of existence and uniqueness of solutions tells us that a solution x = x(t), y = y(t) exists and is unique on the open interval $(0, +\infty)$.

Plotting solutions

Definition

Let $\mathbf{X}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ be a solution of the IVP

 $\mathbf{X}'(t) = P(t)\mathbf{X}(t) + g(t)$ with initial condition $\mathbf{X}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$.

The graphs of the two functions x = x(t) and y = y(t) versus *t* are called **component plots**.

Plus: the component plot displays the dependence on *t* of a specific solution pair x = x(t) and y = y(t) (in particular their behaviour for very large *t*). **Minus:** a new plot is needed if we change the initial conditions (and hence we change the solution).

More effective representations for autonomous systems (see next slide):

- trajectories (or orbits)
- direction fields
- phase portraits

Autonomous systems of two linear 1st order DE

Definition

A system of two linear differential equations $\mathbf{X}'(t) = P(t)\mathbf{X}(t) + g(t)$ is said to be **autonomous** if *P* and *g* are constant in *t*, i.e. it is of the form

$$\frac{d\mathbf{X}}{dt} = A\mathbf{X} + b$$

where:

- A is a 2 × 2 matrix with real coefficients
- b is a 2 × 1 column vector with real coefficients.

Remark: Recall that a 1st order DE is said to be autonomous if of the form $\frac{dy}{dt} = f(y)$, where *f* is constant in *t*. For a *linear* ODE, this means that $\frac{dy}{dt} = \alpha y + \beta$, where α, β are real numbers.

Example:

$$\begin{cases} \frac{dx}{dt} = x + y + 1\\ \frac{dy}{dt} = 4x + y \end{cases}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Autonomous systems of two linear 1st order DE

Definition

A system of two linear differential equations $\mathbf{X}'(t) = P(t)\mathbf{X}(t) + g(t)$ is said to be **autonomous** if *P* and *g* are constant in *t*, i.e. it is of the form

$$\frac{d\mathbf{X}}{dt} = A\mathbf{X} + b$$

where:

- A is a 2 × 2 matrix with real coefficients
- *b* is a 2 × 1 column vector with real coefficients.

Remark: Recall that a 1st order DE is said to be autonomous if of the form $\frac{dy}{dt} = f(y)$, where *f* is constant in *t*. For a *linear* ODE, this means that $\frac{dy}{dt} = \alpha y + \beta$, where α, β are real numbers.

Example:

$$\begin{cases} \frac{dx}{dt} = x + y + 1\\ \frac{dy}{dt} = 4x + y \end{cases} \quad \text{with} \quad A = \begin{pmatrix} 1 & 1\\ 4 & 1 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 1\\ 0 \end{pmatrix} \quad \text{is autonomous.}$$

(日) (日) (日)

Consider the autonomous system of two 1st order linear DE:

$$rac{d\mathbf{X}}{dt} = A\mathbf{X} + b$$
 where $\mathbf{X}(t) = egin{pmatrix} x_1(t) \ x_2(t) \end{pmatrix}$ is the state vector.

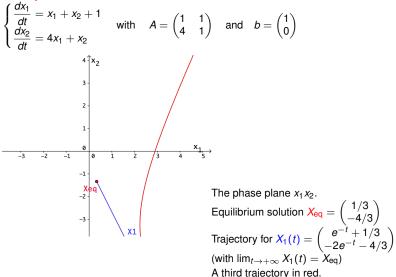
- The $x_1 x_2$ -plane is called the **phase plane** (or **state plane**).
- Let $x_1 = x_1(t)$, $x_2 = x_2(t)$ be a solution. The curve $t \mapsto (x_1(t), x_2(t))$ in the phase plane is a **trajectory** (or **orbit**).
- A direction field is an array of vectors in the phase space: the vector AX + b vector is drawn with its tail at $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ for every choice de (x_1, x_2) is a fixed grid. If a trajectory passes through a point (x_1, x_2) of the grid, then its tangent vector at (x_1, x_2) is a vector of the direction field. Conversely, we can use a direction field to "guess" trajectories.
- An equilibrium solution is a solution for which $\frac{d\mathbf{X}}{dt} = 0$, i.e. $A\mathbf{X} + b = 0$. - If the matrix A is non singular, there is a unique equilibrium solution given by

 $\mathbf{X} = -\mathbf{A}^{-1}\mathbf{b}$. The equilibrium solution is a point in the phase plane.

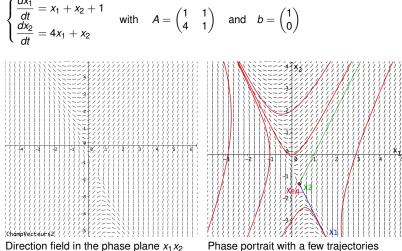
- If the matrix A is singular, there is either infinitely many equilibrium solutions or no equilibrium solution at all.

 A phase portrait is the plot a of representative sample of trajectories, including the equilibrium solutions, in the phase plane.

Example:



Example (continued):



Phase portrait with a few trajectories (including the equilibrium point X_{eq})

Applications to 2nd order DE

Consider the second order DE:

$$y'' + p(t)y' + q(t)y = g(t)$$

with initial conditions $y(t_0) = y_0$ and $y'(t_0) = y_1$.

- Set $x_1 = y$ and $x_2 = y'$. Then $x'_1 = y' = x_2$ and $x'_2 = y''$.
- The DE can now be rewritten as:

$$\begin{cases} x'_2 + p(t)x_2 + q(t)x_1 = g(t) \\ x'_1 = x_2 \end{cases}$$

i.e.

$$\begin{cases} x'_1 = x_2 \\ x'_2 = -q(t)x_1 - p(t)x_2 + g(t) \end{cases}$$

with initial conditions $x_1(t_0) = y_0$ and $x_2(t_0) = y_1$.

Equivently, as the system of two first order DE's

$$\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ g(t) \end{pmatrix}$$

with initial conditions $\mathbf{X}(t_0) = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$

Example:

Transform the given DE equation into a system of first order equations:

$$u'' + 3tu' + 5u = t^2 + 4$$

伺 ト イ ヨ ト イ ヨ