Section 3.2: Systems of two first-order linear DE

Main topics:

- system of two first order linear differential equations
- matrix notation
- direction fields and phase portraits,
- examples of second order differential equations.

Definition

A system of two first order linear differential equations has the form:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \tag{S}\\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

where

- $p_{11}, p_{12}, p_{21}, p_{22}$ and g_{1}, g_{2} are given functions of t, defined on a same open interval I
- $x=x(t), y=y(t)$ are two unknown functions of $t \quad$ (the state variables).

A solution of (S) consists of two differentiable functions $x=x(t), y=y(t)$ satisfying (S) in some interval $I_{0} \subseteq I$.
The system (S) and two initial conditions $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$ form an initial value problem (IVP).

Theorem (Theorem 3.2.1)

Suppose that the functions $p_{11}, p_{12}, p_{21}, p_{22}, g_{1}, g_{2}$ are continuous on an open interval I containing t_{0}. Then the IVP has a unique solution $x=x(t), y=y(t)$ on I.

System notation:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array} \quad \Leftrightarrow \quad \mathbf{X}^{\prime}(t)=P(t) \mathbf{X}(t)+g(t)\right.
$$

Initial conditions:

$$
x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0} \quad \Leftrightarrow \quad \mathbf{X}\left(t_{0}\right)=\mathbf{X}_{0}
$$

where:

- $\mathbf{X}(t)=\binom{x(t)}{y(t)} \quad=$ vector of unknown functions \quad (the state vector).
- $\mathbf{X}^{\prime}(t)=\frac{d \mathbf{X}}{d t}=\binom{\frac{d x}{d t}}{\frac{d y}{d t}}, \underbrace{P(t)=\left(\begin{array}{ll}p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t)\end{array}\right)}_{\text {matrix of coefficients }}, \underbrace{}_{\text {the nonhomogeneous term }} \underbrace{g(t)=\binom{g_{1}(t)}{g_{2}(t)}}$
- $\mathbf{X}_{0}=\binom{x_{0}}{y_{0}}=$ vector of initial conditions.

Matrix notation:

 the nonhomogeneous term, or input or forcing function
Definition

The system is called homogeneous if $g(t)=0$ for all t (i.e. $g_{1}(t)=g_{2}(t)=0$ for all t).

Example

Consider the IVP:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t} y-e^{2 t-1}
\end{array}\right.
$$

with initial condition $x(1)=1$ and $y(1)=0$.

- In matrix notation, the IVP is:

$$
\mathbf{X}^{\prime}(t)=P(t) \mathbf{X}(t)+g(t)
$$

where $P(t)=\left(\begin{array}{cc}t & -3 t^{2} \\ \ln (t) & 1 / t\end{array}\right)$ and $g(t)=\binom{\sin (t)}{-e^{2 t-1}}$, with initial condition $\mathbf{X}(1)=\binom{1}{0}$.

- The theorem of existence and uniqueness of solutions tells us that a solution $x=x(t), y=y(t)$ exists and is unique on the open interval

Example

Consider the IVP:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t} y-e^{2 t-1}
\end{array}\right.
$$

with initial condition $x(1)=1$ and $y(1)=0$.

- In matrix notation, the IVP is:

$$
\mathbf{X}^{\prime}(t)=P(t) \mathbf{X}(t)+g(t),
$$

where $P(t)=\left(\begin{array}{cc}t & -3 t^{2} \\ \ln (t) & 1 / t\end{array}\right)$ and $g(t)=\binom{\sin (t)}{-e^{2 t-1}}$, with initial condition $\mathbf{X}(1)=\binom{1}{0}$.

- The theorem of existence and uniqueness of solutions tells us that a solution $x=x(t), y=y(t)$ exists and is unique on the open interval $(0,+\infty)$.

Plotting solutions

Definition

Let $\mathbf{X}(t)=\binom{x(t)}{y(t)}$ be a solution of the IVP

$$
\mathbf{X}^{\prime}(t)=P(t) \mathbf{X}(t)+g(t) \quad \text { with initial condition } \quad \mathbf{X}_{0}=\binom{x_{0}}{y_{0}} .
$$

The graphs of the two functions $x=x(t)$ and $y=y(t)$ versus t are called component plots.

Plus: the component plot displays the dependence on t of a specific solution pair $x=x(t)$ and $y=y(t)$ (in particular their behaviour for very large t).
Minus: a new plot is needed if we change the initial conditions (and hence we change the solution).

More effective representations for autonomous systems (see next slide):

- trajectories (or orbits)
- direction fields
- phase portraits

Autonomous systems of two linear 1st order DE

Definition

A system of two linear differential equations $\mathbf{X}^{\prime}(t)=P(t) \mathbf{X}(t)+g(t)$ is said to be autonomous if P and g are constant in t, i.e. it is of the form

$$
\frac{d \mathbf{X}}{d t}=A \mathbf{X}+b
$$

where:

- A is a 2×2 matrix with real coefficients
- b is a 2×1 column vector with real coefficients.

Remark: Recall that a 1st order DE is said to be autonomous if of the form $\frac{d y}{d t}=f(y)$, where f is constant in t. For a linear ODE, this means that $\frac{d y}{d t}=\alpha y+\beta$, where α, β are real numbers.

Example:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+y+1 \\
\frac{d y}{d t}=4 x+y
\end{array}\right.
$$

Autonomous systems of two linear 1st order DE

Definition

A system of two linear differential equations $\mathbf{X}^{\prime}(t)=P(t) \mathbf{X}(t)+g(t)$ is said to be autonomous if P and g are constant in t, i.e. it is of the form

$$
\frac{d \mathbf{X}}{d t}=A \mathbf{X}+b
$$

where:

- A is a 2×2 matrix with real coefficients
- b is a 2×1 column vector with real coefficients.

Remark: Recall that a 1st order DE is said to be autonomous if of the form $\frac{d y}{d t}=f(y)$, where f is constant in t. For a linear ODE, this means that $\frac{d y}{d t}=\alpha y+\beta$, where α, β are real numbers.

Example:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+y+1 \\
\frac{d y}{d t}=4 x+y
\end{array}\right.
$$

$$
\text { with } \quad A=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \quad \text { and } \quad b=\binom{1}{0} \quad \text { is autonomous. }
$$

Consider the autonomous system of two 1st order linear DE:

$$
\frac{d \mathbf{X}}{d t}=A \mathbf{X}+b \quad \text { where } \quad \mathbf{X}(t)=\binom{x_{1}(t)}{x_{2}(t)} \quad \text { is the state vector. }
$$

- The $x_{1} x_{2}$-plane is called the phase plane (or state plane).
- Let $x_{1}=x_{1}(t), x_{2}=x_{2}(t)$ be a solution. The curve $t \mapsto\left(x_{1}(t), x_{2}(t)\right)$ in the phase plane is a trajectory (or orbit).
- A direction field is an array of vectors in the phase space: the vector $A \mathbf{X}+b$ vector is drawn with its tail at $\mathbf{X}=\binom{x_{1}}{x_{2}}$ for every choice de $\left(x_{1}, x_{2}\right)$ is a fixed grid. If a trajectory passes through a point (x_{1}, x_{2}) of the grid, then its tangent vector at $\left(x_{1}, x_{2}\right)$ is a vector of the direction field. Conversely, we can use a direction field to "guess" trajectories.
- An equilibrium solution is a solution for which $\frac{d \mathbf{X}}{d t}=0$, i.e. $A \mathbf{X}+b=0$. - If the matrix A is non singular, there is a unique equilibrium solution given by $\mathbf{X}=-A^{-1} b$. The equilibrium solution is a point in the phase plane.
- If the matrix A is singular, there is either infinitely many equilibrium solutions or no equilibrium solution at all.
- A phase portrait is the plot a of representative sample of trajectories, including the equilibrium solutions, in the phase plane.

Example:

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=x_{1}+x_{2}+1 \\
\frac{d x_{2}}{d t}=4 x_{1}+x_{2}
\end{array} \quad \text { with } \quad A=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \quad \text { and } \quad b=\binom{1}{0}\right.
$$

The phase plane $x_{1} x_{2}$.
Equilibrium solution $X_{\text {eq }}=\binom{1 / 3}{-4 / 3}$
Trajectory for $X_{1}(t)=\binom{e^{-t}+1 / 3}{-2 e^{-t}-4 / 3}$
(with $\lim _{t \rightarrow+\infty} X_{1}(t)=X_{\text {eq }}$)
A third trajectory in red.

Example (continued):

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=x_{1}+x_{2}+1 \\
\frac{d x_{2}}{d t}=4 x_{1}+x_{2}
\end{array} \quad \text { with } \quad A=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \quad \text { and } \quad b=\binom{1}{0}\right.
$$

Direction field in the phase plane $x_{1} x_{2}$

Phase portrait with a few trajectories (including the equilibrium point $X_{\text {eq }}$)

Applications to 2nd order DE

Consider the second order DE:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

with initial conditions $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{1}$.

- Set $x_{1}=y$ and $x_{2}=y^{\prime}$. Then $x_{1}^{\prime}=y^{\prime}=x_{2}$ and $x_{2}^{\prime}=y^{\prime \prime}$.
- The DE can now be rewritten as:

$$
\left\{\begin{array}{l}
x_{2}^{\prime}+p(t) x_{2}+q(t) x_{1}=g(t) \\
x_{1}^{\prime}=x_{2}
\end{array}\right.
$$

i.e.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)
\end{array}\right.
$$

with initial conditions $x_{1}\left(t_{0}\right)=y_{0}$ and $x_{2}\left(t_{0}\right)=y_{1}$.

- Equivently, as the system of two first order DE's

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{X}+\binom{0}{g(t)}
$$

with initial conditions $\mathbf{X}\left(t_{0}\right)=\binom{y_{0}}{y_{1}}$

Example:

Transform the given DE equation into a system of first order equations:

$$
u^{\prime \prime}+3 t u^{\prime}+5 u=t^{2}+4
$$

