
Section 3.2: Systems of two first-order linear DE

Main topics:

system of two first order linear differential equations

matrix notation

direction fields and phase portraits,

examples of second order differential equations.
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Definition
A system of two first order linear differential equations has the form:

dx
dt

= p11(t)x + p12(t)y + g1(t)

dy
dt

= p21(t)x + p22(t)y + g2(t)
(S)

where

p11, p12, p21, p22 and g1, g2 are given functions of t , defined on a same open
interval I

x = x(t), y = y(t) are two unknown functions of t (the state variables).

A solution of (S) consists of two differentiable functions x = x(t), y = y(t) satisfying
(S) in some interval I0 ⊆ I.

The system (S) and two initial conditions x(t0) = x0 and y(t0) = y0 form an initial
value problem (IVP).

Theorem (Theorem 3.2.1)
Suppose that the functions p11, p12, p21, p22, g1, g2 are continuous on an open interval I
containing t0. Then the IVP has a unique solution x = x(t), y = y(t) on I.
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System notation: Matrix notation:
dx
dt

= p11(t)x + p12(t)y + g1(t)

dy
dt

= p21(t)x + p22(t)y + g2(t)
⇔ X′(t) = P(t)X(t) + g(t)

Initial conditions:
x(t0) = x0, y(t0) = y0 ⇔ X(t0) = X0

where:

X(t) =
(

x(t)
y(t)

)
= vector of unknown functions (the state vector).

X′(t) =
dX
dt

=

dx
dt
dy
dt

, P(t) =
(

p11(t) p12(t)
p21(t) p22(t)

)
︸ ︷︷ ︸

matrix of coefficients

, g(t) =
(

g1(t)
g2(t)

)
︸ ︷︷ ︸

the nonhomogeneous term,
or input or forcing function

X0 =

(
x0

y0

)
= vector of initial conditions.

Definition
The system is called homogeneous if g(t) = 0 for all t (i.e. g1(t) = g2(t) = 0 for all t).
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Example
Consider the IVP: 

dx
dt

= tx − 3t2y + sin(t)

dy
dt

= ln(t)x +
1
t

y − e2t−1

with initial condition x(1) = 1 and y(1) = 0.

In matrix notation, the IVP is:

X′(t) = P(t)X(t) + g(t) ,

where P(t) =
(

t −3t2

ln(t) 1/t

)
and g(t) =

(
sin(t)
−e2t−1

)
, with initial condition

X(1) =
(

1
0

)
.

The theorem of existence and uniqueness of solutions tells us that a solution
x = x(t), y = y(t) exists and is unique on the open interval

(0,+∞).
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Plotting solutions
Definition

Let X(t) =
(

x(t)
y(t)

)
be a solution of the IVP

X′(t) = P(t)X(t) + g(t) with initial condition X0 =

(
x0

y0

)
.

The graphs of the two functions x = x(t) and y = y(t) versus t are called component
plots.

Plus: the component plot displays the dependence on t of a specific solution pair
x = x(t) and y = y(t) (in particular their behaviour for very large t).
Minus: a new plot is needed if we change the initial conditions (and hence we change
the solution).

More effective representations for autonomous systems (see next slide):

trajectories (or orbits)

direction fields

phase portraits
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Autonomous systems of two linear 1st order DE

Definition
A system of two linear differential equations X′(t) = P(t)X(t) + g(t) is said to be
autonomous if P and g are constant in t , i.e. it is of the form

dX
dt

= AX + b

where:

A is a 2× 2 matrix with real coefficients

b is a 2× 1 column vector with real coefficients.

Remark: Recall that a 1st order DE is said to be autonomous if of the form dy
dt = f (y), where f is

constant in t . For a linear ODE, this means that dy
dt = αy + β, where α, β are real numbers.

Example:
dx
dt

= x + y + 1

dy
dt

= 4x + y

with A =

(
1 1
4 1

)
and b =

(
1
0

)
is autonomous.
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Consider the autonomous system of two 1st order linear DE:

dX
dt

= AX + b where X(t) =
(

x1(t)
x2(t)

)
is the state vector .

The x1x2-plane is called the phase plane (or state plane).

Let x1 = x1(t), x2 = x2(t) be a solution. The curve t 7→ (x1(t), x2(t)) in the phase
plane is a trajectory (or orbit).

A direction field is an array of vectors in the phase space: the vector AX + b

vector is drawn with its tail at X =

(
x1

x2

)
for every choice de (x1, x2) is a fixed grid.

If a trajectory passes through a point (x1, x2) of the grid, then its tangent vector
at (x1, x2) is a vector of the direction field. Conversely, we can use a direction
field to “guess" trajectories.

An equilibrium solution is a solution for which
dX
dt

= 0, i.e. AX + b = 0.
− If the matrix A is non singular, there is a unique equilibrium solution given by
X = −A−1b. The equilibrium solution is a point in the phase plane.
− If the matrix A is singular, there is either infinitely many equilibrium solutions or
no equilibrium solution at all.

A phase portrait is the plot a of representative sample of trajectories, including
the equilibrium solutions, in the phase plane.
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Example:
dx1

dt
= x1 + x2 + 1

dx2

dt
= 4x1 + x2

with A =

(
1 1
4 1

)
and b =

(
1
0

)

The phase plane x1x2.

Equilibrium solution Xeq =

(
1/3
−4/3

)
Trajectory for X1(t) =

(
e−t + 1/3
−2e−t − 4/3

)
(with limt→+∞ X1(t) = Xeq)
A third trajectory in red.
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Example (continued):


dx1

dt
= x1 + x2 + 1

dx2

dt
= 4x1 + x2

with A =

(
1 1
4 1

)
and b =

(
1
0

)

Direction field in the phase plane x1x2 Phase portrait with a few trajectories
(including the equilibrium point Xeq)
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Applications to 2nd order DE
Consider the second order DE:

y ′′ + p(t)y ′ + q(t)y = g(t)

with initial conditions y(t0) = y0 and y ′(t0) = y1.

Set x1 = y and x2 = y ′. Then x ′1 = y ′ = x2 and x ′2 = y ′′.
The DE can now be rewritten as:{

x ′2 + p(t)x2 + q(t)x1 = g(t)
x ′1 = x2

i.e. {
x ′1 = x2

x ′2 = −q(t)x1 − p(t)x2 + g(t)

with initial conditions x1(t0) = y0 and x2(t0) = y1.
Equivently, as the system of two first order DE’s

X′ =
(

0 1
−q(t) −p(t)

)
X +

(
0

g(t)

)
with initial conditions X(t0) =

(
y0

y1

)
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Example:
Transform the given DE equation into a system of first order equations:

u′′ + 3tu′ + 5u = t2 + 4
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