(1) $\lambda_{1} \neq \lambda_{2} \quad$ both not zero

In this case, $\mathbf{x}_{\mathrm{eq}}=\binom{0}{0}$ is the unique equilibrium point (or critical point).
Recall: $\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$ is the general solution
$\triangleright \lambda_{1} \neq \lambda_{2}$ and both negative, WLOG $\lambda_{1}<\lambda_{2}<0$:
Then $\lim _{t \rightarrow+\infty} \mathbf{x}(t)=\binom{0}{0}=\mathbf{x}_{\text {eq }}$, i.e. all trajectories approach $\mathbf{x}_{\text {eq }}$ asymptotically as $t \rightarrow+\infty$: we say that $\mathbf{x}_{\text {eq }}$ is asymptotically stable and we call it a nodal sink.

$$
\text { If } \begin{aligned}
C_{2} \neq 0 \text {, then } \quad \begin{aligned}
\mathbf{x}(t) & =e^{\lambda_{2} t}\left(C_{1} e^{\left(\lambda_{1}-\lambda_{2}\right) t} \mathbf{v}_{1}+C_{2} \mathbf{v}_{2}\right) \\
& \sim_{t \rightarrow+\infty} \quad C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}=C_{2} \mathbf{x}_{2}(t)
\end{aligned}, ~
\end{aligned}
$$

i.e. all solutions with $C_{2} \neq 0$ approach $\mathbf{x}_{\text {eq }}$ along the direction of $C_{2} \mathbf{v}_{2}$ (=the eigenvector with eigenvalue closest to 0).

$$
\text { If } \begin{aligned}
C_{1} \neq 0 \text {, then } \quad \mathbf{x}(t) & =e^{\lambda_{1} t}\left(C_{1} \mathbf{v}_{1}+C_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t} \mathbf{v}_{2}\right) \\
& \sim_{t \rightarrow-\infty} \quad C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}=C_{1} \mathbf{x}_{1}(t)
\end{aligned}
$$

J. bRENINAN et al., differential equations, FIgure 3.3.2
i.e. all solutions with $C_{1} \neq 0$ backward in time approach the direction of $C_{1} \mathbf{v}_{1}$.
$\triangleright \lambda_{1} \neq \lambda_{2}$ and both positive, WLOG $\lambda_{1}>\lambda_{2}>0$:
Then all solutions diverge from $\mathbf{x}_{\text {eq }}$ for $t \rightarrow+\infty$ and $\lim _{t \rightarrow-\infty} \mathbf{x}(t)=\mathbf{x}_{\text {eq }}$, i.e. all trajectories approach $\mathbf{x}_{\text {eq }}$ backward in time $t \rightarrow-\infty$: we say that $\mathbf{x}_{\text {eq }}$ is unstable and we call it a nodal source.

$$
\text { If } C_{2} \neq 0 \text {, then } \quad \mathbf{x}(t)=e^{\lambda_{2} t}\left(C_{1} e^{\left(\lambda_{1}-\lambda_{2}\right) t} \mathbf{v}_{1}+C_{2} \mathbf{v}_{2}\right) \quad \sim_{t \rightarrow-\infty} \quad C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}=C_{2} \mathbf{x}_{2}(t)
$$

i.e. backward in time all solutions with $C_{2} \neq 0$ approach $\mathbf{x}_{\text {eq }}$ along the direction of $C_{2} \mathbf{v}_{2}$ (=the eigenvector with eigenvalue closest to 0).

$$
\text { If } C_{1} \neq 0 \text {, then } \quad \mathbf{x}(t)=e^{\lambda_{1} t}\left(C_{1} \mathbf{v}_{1}+C_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t} \mathbf{v}_{2}\right) \quad \sim_{t \rightarrow+\infty} \quad C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}=C_{1} \mathbf{x}_{1}(t)
$$

i.e. all solutions with $C_{1} \neq 0$ move for $t \rightarrow \infty$ asymptotically to a line of direction $C_{1} \mathbf{v}_{1}$.
(Picture as in the previous case "with arrows reversed")
Remark: In both cases, $\mathbf{x}_{\text {eq }}$ is approached (either in positive time or backward time) in a direction parallel to an eigenvector for the eigenvalue which is the closest to 0 .
$\triangleright \lambda_{1} \neq \lambda_{2}$ of opposite sign, WLOG $\lambda_{2}<0<\lambda_{1}$:
In this case there are solutions that tend to $\mathbf{x}_{\text {eq }}$ for $t \rightarrow+\infty$, but most of the solutions (those for $C_{1} \neq 0$) grows to infinity: indeed, if $C_{1}=0$, then

$$
\lim _{t \rightarrow+\infty} C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}=\mathbf{x}_{\mathrm{eq}}
$$

and if $C_{1} \neq 0$, then

$$
\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2} \sim_{t \rightarrow+\infty} C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}
$$

grow to infinity in the direction of $C_{1} \mathbf{v}_{1}$. We say that $\mathbf{x}_{\text {eq }}$ is unstable and we call it a saddle point.

(2) $\lambda_{1} \neq \lambda_{2} \quad$ and $\lambda_{1}=0$

$\triangleright \quad \lambda_{1}=0$ and $\lambda_{2}<0$
The general solution is $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=C_{1} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$
Each eigenvector \mathbf{v} of eigenvalue $\lambda_{1}=0$ is of the form $C_{1} \mathbf{v}_{1}$ and satisfies $A \mathbf{v}=0$. So we have a line ℓ of critical points.
The trajectories $\mathbf{x}(t)=C_{1} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$ passing through points not in ℓ (i.e. with $C_{2} \neq 0$) move along half lines parallel to $C_{2} \mathbf{v}_{2}$ and asymptotically tend to the point on ℓ given by $\lim _{t \rightarrow+\infty} \mathbf{x}(t)=C_{1} \mathbf{v}_{1}$.
$\triangleright \quad \lambda_{1}=0$ and $\lambda_{2}>0$
The situation is as above, with direction of the trajectories not passing though the critical line reversed since

$$
\lim _{t \rightarrow-\infty} \mathbf{x}(t)=C_{1} \mathbf{v}_{1} .
$$

i.e. the trajectories passing through points which are not on L tend to points on L backward in time and diverge to infinity for $t \rightarrow+\infty$.

