Section 3.3 (cont'd):

Recall: if $\mathbf{x}^{\prime}=A \mathbf{x}$ is an autonomous (=constant coefficient) system of two linear DE, then its general solution is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{\mathbf{1}}(t)+c_{2} \mathbf{x}_{\mathbf{2}}(t)
$$

where \mathbf{x}_{1} and $\mathbf{x}_{\mathbf{2}}$ are two linearly independent solutions, c_{1} and c_{2} are constant. How to find \mathbf{x}_{1} and \mathbf{x}_{2} ?

- The general solution of the linear DE $y^{\prime}=a y$, where $a \in \mathbb{R}$, is $y(t)=C e^{a t}$.
- If $A=\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right)$ then the system $\mathbf{x}^{\prime}=A \mathbf{x}$ is $\left\{\begin{array}{l}x_{1}^{\prime}=a_{1} x_{1} \\ x_{2}^{\prime}=a_{2} x_{2}\end{array}\right.$

So $x_{1}(t)=e^{a_{1} t}$ is a solution of the 1 st DE and $\mathbf{x}(t)=\binom{x_{1}(t)}{0}=e^{a_{1} t}\binom{1}{0}$ is a solution of the system.
Here a_{1} is an eigenvalue of A and $\binom{1}{0}$ is an eigenvector with eigenvalue a_{1}.
Idea: We look for exponential solutions and use the eigenvalues of A.

- Suppose that \mathbf{v} is eigenvector of A with eingenvalue λ, i.e. $A \mathbf{v}=\lambda \mathbf{v}$.
- $\left(e^{\lambda t} \mathbf{v}\right)^{\prime}=\lambda e^{t \lambda} \mathbf{v}=e^{\lambda t}(\lambda \mathbf{v})=e^{\lambda t}(A \mathbf{v})=A\left(e^{\lambda t} \mathbf{v}\right)$,
- Conclusion: $\mathbf{x}(t)=e^{t \lambda} \mathbf{v}$ is a solution of the system $\mathbf{x}^{\prime}=A \mathbf{x}$.

Example 1:

Consider the system of two linear differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$, where

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right) .
$$

- Find the eigenvalues λ_{1} and λ_{2} of A.
- Find the eigenvectors of A of eigenvalue λ_{1} and those of eigenvalue λ_{2}.
- Fix an eigenvector \mathbf{v}_{1} of eigenvalue λ_{1} and verify that $\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}$ is a solution of the system.
- Can you write the trace trace (A) of A and the determinant $\operatorname{det}(A)$ of A in terms of the eigenvalues λ_{1} and λ_{2} ?

The eigenvalues of A are solutions of the characteristic equation of A :

$$
\operatorname{det}(A-\lambda I)=0, \quad \text { i.e. } \quad \lambda^{2}-\operatorname{trace}(A) \lambda-\operatorname{det}(A)=0 .
$$

Properties of the characteristic equation:

- 2nd order equation in $\lambda \Rightarrow$ two (possibly equal) eigenvalues λ_{1}, λ_{2}
- real coefficients $\Rightarrow\left\{\begin{array}{l}\text { either both } \lambda_{1}, \lambda_{2} \in \mathbb{R} \\ \text { or } \lambda_{1}, \lambda_{2} \in \mathbb{C} \quad \text { and } \quad \lambda_{2}=\overline{\lambda_{1}} \quad \text { (=complex conjugate of } \lambda_{1} \text {) }\end{array}\right.$
- $\operatorname{trace}(A)=\lambda_{1}+\lambda_{2} \quad$ and $\quad \operatorname{det}(A)=\lambda_{1} \lambda_{2}$.

The form and dynamical properties of the solutions of the DE depend on cases:
I. both $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $\left\{\begin{array}{lll}\text { I.a) } & \lambda_{1} \neq \lambda_{2} & \text { (see Section } 3.3 \text { below) } \\ \text { I.b) } & \lambda_{1}=\lambda_{2} & \text { (see Section 3.5) }\end{array}\right.$
II. $\lambda_{1}, \lambda_{2} \in \mathbb{C}($ not in $\mathbb{R}) \quad$ and $\quad \lambda_{2}=\overline{\lambda_{1}} \quad$ (see Section 3.4)

For equilibrium (or critical) points $\mathbf{x}_{\text {eq }}$ (=solutions of $A \mathbf{x}=0$) also need to distinguish:

- both λ_{1}, λ_{2} are non-zero, i.e. $\operatorname{det}(A) \neq 0$, i.e. $\mathbf{x}_{\mathrm{eq}}=\binom{0}{0}$ unique eq. point
- one of λ_{1}, λ_{2} is zero, so $\operatorname{det}(A)=0$, i.e. one straight line of eq. points $\mathbf{x}_{\text {eq }}$.

Case I.a): $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $\lambda_{1} \neq \lambda_{2}$

$\mathbf{v}_{1}=\binom{v_{11}}{v_{21}}$ eigenvector of A of eigenvalue $\lambda_{1} \Rightarrow \mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}$ solution of $\mathbf{x}^{\prime}=A \mathbf{x}$.
$\mathbf{v}_{2}=\binom{v_{12}}{v_{22}}$ eigenvector of A of eigenvalue $\lambda_{2} \Rightarrow \mathbf{x}_{2}(t)=e^{\lambda_{2} t} \mathbf{v}_{2}$ solution of $\mathbf{x}^{\prime}=A \mathbf{x}$.
Since $\lambda_{1} \neq \lambda_{2}$, the solutions \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent.
Thus: the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

Example. Write the general solution of the system of DE of Example 1.
For the dynamics of the solutions, we need to distinguish more cases:
(1) both λ_{1}, λ_{2} are not zero \longrightarrow same sign \longrightarrow opposite sign both negative
(2) one of λ_{1}, λ_{2} is zero
(3) $\lambda_{1}=\lambda_{2}=0$

Remark: The case (3), i.e. $A=0$, is degenerate: the system becomes $\mathbf{x}^{\prime}=0$, i.e. $\left\{\begin{array}{l}x_{1}^{\prime}=0 \\ x_{2}^{\prime}=0\end{array}\right.$, with general solution $\mathbf{x}=\binom{C_{1}}{C_{2}}$ (two constants). The cases to be studied are (1) and (2).

Example 1 (continued):
Consider the system of two linear differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$, where

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right) .
$$

We have found that the general solution is

$$
\mathbf{x}(t)=C_{1} e^{-3 t}\binom{1}{-3}+C_{2} e^{-2 t}\binom{1}{-2}
$$

- Determine the critical point(s) \mathbf{x}_{eq} of the system.
- Compute $\lim _{t \rightarrow+\infty} \mathbf{x}(t)$.
- Show that, if $C_{2} \neq 0$, then

$$
\mathbf{x}(t) \quad \sim_{t \rightarrow+\infty} \quad C_{2} e^{-2 t}\binom{1}{-2}=C_{2} \mathbf{x}_{2}(t)
$$

- Show that, if $C_{1} \neq 0$, then

$$
\mathbf{x}(t) \quad \sim_{t \rightarrow-\infty} \quad C_{1} e^{-3 t}\binom{1}{-3}=C_{1} \mathbf{x}_{1}(t)
$$

