Section 3.3 (cont'd):

Recall: if $\mathbf{x}' = A\mathbf{x}$ is an autonomous (=constant coefficient) system of two linear DE, then its general solution is of the form

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$$

where $\mathbf{x_1}$ and $\mathbf{x_2}$ are two linearly independent solutions, c_1 and c_2 are constant.

How to find \mathbf{x}_1 and \mathbf{x}_2 ?

- The general solution of the linear DE y' = ay, where $a \in \mathbb{R}$, is $y(t) = Ce^{at}$.
- If $A = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$ then the system $\mathbf{x}' = A\mathbf{x}$ is $\begin{cases} x'_1 = a_1 x_1 \\ x'_2 = a_2 x_2 \end{cases}$

So $x_1(t) = e^{a_1 t}$ is a solution of the 1st DE and $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ 0 \end{pmatrix} = e^{a_1 t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is a solution of the system.

Here a_1 is an eigenvalue of A and $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue a_1 .

Idea: We look for exponential solutions and use the eigenvalues of A.

• Suppose that **v** is eigenvector of A with eingenvalue λ , i.e. $A\mathbf{v} = \lambda \mathbf{v}$.

•
$$(e^{\lambda t}\mathbf{v})' = \lambda e^{t\lambda}\mathbf{v} = e^{\lambda t}(\lambda \mathbf{v}) = e^{\lambda t}(A\mathbf{v}) = A(e^{\lambda t}\mathbf{v}),$$

• **Conclusion:** $\mathbf{x}(t) = e^{t\lambda} \mathbf{v}$ is a solution of the system $\mathbf{x}' = A\mathbf{x}$.

クへで 1/9

Example 1:

Consider the system of two linear differential equations $\mathbf{x}' = A\mathbf{x}$, where

$$A = \begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix}.$$

- Find the eigenvalues λ_1 and λ_2 of *A*.
- Find the eigenvectors of A of eigenvalue λ_1 and those of eigenvalue λ_2 .
- Fix an eigenvector v₁ of eigenvalue λ₁ and verify that x₁(t) = e^{λ₁t}v₁ is a solution of the system.
- Can you write the trace trace(A) of A and the determinant det(A) of A in terms of the eigenvalues λ₁ and λ₂?

The eigenvalues of A are solutions of the characteristic equation of A:

$$\det(A - \lambda I) = 0$$
, i.e. $\lambda^2 - \operatorname{trace}(A)\lambda - \det(A) = 0$.

Properties of the characteristic equation:

- 2nd order equation in $\lambda \Rightarrow$ two (possibly equal) eigenvalues λ_1, λ_2
- real coefficients ⇒ {either both λ₁, λ₂ ∈ ℝ or λ₁, λ₂ ∈ ℂ and λ₂ = λ₁ (=complex conjugate of λ₁)
 trace(A) = λ₁ + λ₂ and det(A) = λ₁λ₂.

The form and dynamical properties of the solutions of the DE depend on cases:

- I. both $\lambda_1, \lambda_2 \in \mathbb{R}$ and $\begin{cases} I.a \\ I.b \end{cases}$ $\lambda_1 \neq \lambda_2$ (see Section 3.3 below) $\lambda_1 = \lambda_2$ (see Section 3.5)
- II. $\lambda_1, \lambda_2 \in \mathbb{C}$ (not in \mathbb{R}) and $\lambda_2 = \overline{\lambda_1}$ (see Section 3.4)

For equilibrium (or critical) points \mathbf{x}_{eq} (=solutions of $A\mathbf{x} = 0$) also need to distinguish:

- both λ_1, λ_2 are non-zero, i.e. det(A) \neq 0, i.e. $\mathbf{x}_{eq} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ unique eq. point
- one of λ_1, λ_2 is zero, so det(A) = 0, i.e. one straight line of eq. points \mathbf{x}_{eq} .

Case I.a): $\lambda_1, \lambda_2 \in \mathbb{R}$ and $\lambda_1 \neq \lambda_2$ $\mathbf{v}_{1} = \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix} \text{ eigenvector of } A \text{ of eigenvalue } \lambda_{1} \implies \mathbf{x}_{1}(t) = e^{\lambda_{1} t} \mathbf{v}_{1} \text{ solution of } \mathbf{x}' = A\mathbf{x}.$ $\mathbf{v}_{2} = \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix} \text{ eigenvector of } A \text{ of eigenvalue } \lambda_{2} \implies \mathbf{x}_{2}(t) = e^{\lambda_{2} t} \mathbf{v}_{2} \text{ solution of } \mathbf{x}' = A\mathbf{x}.$ Since $\lambda_1 \neq \lambda_2$, the solutions \mathbf{x}_1 and \mathbf{x}_2 are linearly independent. Thus: the general solution of $\mathbf{x}' = A\mathbf{x}$ is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2$$

Write the general solution of the system of DE of Example 1. Example.

For the dynamics of the solutions, we need to distinguish more cases:

both λ_1, λ_2 are not zero $\xrightarrow{}$ same sign $\xrightarrow{}$ both positive both negative one of λ_1, λ_2 is zero (1) (2) $\lambda_1 = \lambda_2 = 0$ (3) **Remark:** The case (3), i.e. A = 0, is degenerate: the system becomes $\mathbf{x}' = 0$, i.e. $\begin{cases} x'_1 = 0 \\ x'_2 = 0 \end{cases}$, with general solution $\mathbf{x} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$ (two constants). The cases to be studied are (1) and (2).

590 4/9

Example 1 (continued):

Consider the system of two linear differential equations $\mathbf{x}' = A\mathbf{x}$, where

$$A = \begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix}.$$

We have found that the general solution is

$$\mathbf{x}(t) = C_1 e^{-3t} \begin{pmatrix} 1 \\ -3 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

- Determine the critical point(s) \boldsymbol{x}_{eq} of the system.
- Compute $\lim_{t\to+\infty} \mathbf{x}(t)$.
- Show that, if $C_2 \neq 0$, then

$$\mathbf{x}(t) \quad \sim_{t \to +\infty} \quad C_2 e^{-2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = C_2 \mathbf{x}_2(t)$$

• Show that, if $C_1 \neq 0$, then

$$\mathbf{x}(t) \sim_{t\to-\infty} C_1 e^{-3t} \begin{pmatrix} \mathbf{1} \\ -\mathbf{3} \end{pmatrix} = C_1 \mathbf{x}_1(t).$$

590

5/9

E

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

< □ ▶