Section 3.3: Homogenous linear systems with constant coefficients

Main topics:

- Reduction to homogeneous systems of DE's,
- Homogenous systems:
 - Principle of superposition,
 - Wronskian and linear independance of solutions,
 - Use of eigenvalues and eigenvectors.

Reduction to homogeneous systems of DE's Consider the system of DE's

$$\mathbf{x}' = A\mathbf{x} + b$$

where A is a 2×2 real matrix, b a 2×1 column vector.

Suppose A is invertible.

Then there is a unique equilibrium solution $\mathbf{x}_{eq} = -A^{-1}b$.

Change of variables: $\overline{\mathbf{x}} = \mathbf{x} - \mathbf{x}_{eq}$

Then

$$\overline{\mathbf{x}}' = (\mathbf{x} - \mathbf{x}_{eq})' = \mathbf{x}' = A\mathbf{x} + b = A(\mathbf{x} - (-A^{-1}b)) = A(\mathbf{x} - \mathbf{x}_{eq}) = A\overline{\mathbf{x}}$$

Therefore, the system reduces to the homogeneous system

$$\overline{\mathbf{x}}' = A\overline{\mathbf{x}}$$

Example:

Reduce the following system to a homogeneous one:

$$\begin{cases} \frac{dx}{dt} = x + y + 1\\ \frac{dy}{dt} = 4x + y \end{cases} \quad \text{with} \quad A = \begin{pmatrix} 1 & 1\\ 4 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad \mathbf{x}_{eq} = \begin{pmatrix} 1/3\\ -4/3 \end{pmatrix}.$$

Homogeneous systems of two linear DEs (constant coefficients)

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_1 = \mathbf{x}_1(t)$ and $\mathbf{x}_2 = \mathbf{x}_2(t)$ are solutions of the homogeneous system

 $\mathbf{x}' = A\mathbf{x}$

Then for any real (or complex) numbers c_1, c_2 ,

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$$

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions. It is known as the **principle of superposition**.

Definition

If $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$ for all *t*, then we say that \mathbf{x} is a **linear combination** of \mathbf{x}_1 and \mathbf{x}_2 , and we write it as: $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$.

Let
$$\mathbf{x}_1(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix}$$
 and $\mathbf{x}_2(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$ be two solutions of the system $\mathbf{x}' = A\mathbf{x}$.

Definition

The Wronskian of x_1 and x_2 is the function $W[x_1, x_2]$ defined at t by the determinant

$$W[\mathbf{x_1}, \mathbf{x_2}](t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}$$

Definition

The solutions $\mathbf{x_1}$ and $\mathbf{x_2}$ of the system are said **linearly dependent** in an open interval *I* if there are constants c_1 , c_2 (not both zero and *independent of t*) such that $c_1\mathbf{x_1}(t) + c_2\mathbf{x_2}(t) = 0$ for all $t \in I$.

Two solutions that are not linearly dependent are called **linearly independent**.

 \mathbf{x}_1 and \mathbf{x}_2 are linearly independent if and only if $W[\mathbf{x}_1, \mathbf{x}_2](t) \neq 0$ for all t in I.

Two solutions x_1 and x_2 that are linearly independent are said to form a **fundamental** set of solutions.

Remark: $\mathbf{x_1}$ and $\mathbf{x_2}$ are linearly dependent if and only if one is a constant multiple of the other: there is a constant *k* (independent of *t*) such that

$$\mathbf{x}_1(t) = k\mathbf{x}_2(t)$$
 for all t or $\mathbf{x}_2(t) = k\mathbf{x}_1(t)$ for all t .

3

Theorem (Theorem 3.3.4)

Suppose $\mathbf{x_1}$ and $\mathbf{x_2}$ for two linearly independent solutions of the system $\mathbf{x}' = A\mathbf{x}$. Then any solution of the above system is of the form

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$

for some constants c_1 and c_2 . This is the **general solution** of the system.

If, moreover, we fix an intitial condition $\mathbf{x}(t_0) = \mathbf{x}_0$, where $\mathbf{x}_0 = \begin{pmatrix} x_{10} \\ x_{20} \end{pmatrix}$ is a constant

vector, then the constants c_1 and c_2 are uniquely determined and the solution to the system is unique.

Conclusion:

- The general solution of a homogenous system of two linear first order DEs is a linear combination of two linearly independent solutions (=one is not a multiple of the other)
- To find the general solution it is enough to find two linearly independent solutions.
- An initial condition uniquely determines the constants c₁ and c₂ and hence yields a unique solution to an IVP.

The eigenvalues and eigenvectors of the matrix coefficients *A* allow us to find the two independent solutions we need to solve $\mathbf{x}' = A\mathbf{x}$.

IDEA:

The general solution of one linear homogenous DE y' = ay, where a is a constant, is y(t) = Ce^{at}.

• If
$$A = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$$
 then the system $\mathbf{x}' = A\mathbf{x}$ is $\begin{cases} x_1' = a_1 x_1 \\ x_2' = a_2 x_2 \end{cases}$.
So $x_1(t) = e^{a_1 t}$ is a solution of the 1st DE and $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ 0 \end{pmatrix} = e^{a_1 t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is a solution of the system.

Here a_1 is an eigenvalue of A and $\begin{pmatrix} 1\\0 \end{pmatrix}$ is an eigenvector with eigenvalue a_1 .

Conclusion: We look for exponential solutions and use the eigenvalues of A.

• Suppose that v is eigenvector of A with eingenvalue λ , i.e. $Av = \lambda v$.

•
$$(e^{\lambda t}v)' = \lambda e^{t\lambda}v$$
, so that $(e^{\lambda t}v)' = e^{\lambda t}(\lambda v) = A(e^{\lambda t}v)$,

• Then $\mathbf{x}(t) = e^{t\lambda} v$ is a solution of the system $\mathbf{x}' = A\mathbf{x}$.