Section 3.3: Homogenous linear systems with constant coefficients

Main topics:

- Reduction to homogeneous systems of DE's,
- Homogenous systems:
\triangleright Principle of superposition,
\triangleright Wronskian and linear independance of solutions,
\triangleright Use of eigenvalues and eigenvectors.

Reduction to homogeneous systems of DE's

Consider the system of DE's

$$
\mathbf{x}^{\prime}=A \mathbf{x}+b
$$

where A is a 2×2 real matrix, b a 2×1 column vector.
Suppose A is invertible.
Then there is a unique equilibrium solution $\mathbf{x}_{\mathrm{eq}}=-A^{-1} b$.
Change of variables: $\overline{\mathbf{x}}=\mathbf{x}-\mathbf{x}_{\text {eq }}$
Then

$$
\overline{\mathbf{x}}^{\prime}=\left(\mathbf{x}-\mathbf{x}_{\mathrm{eq}}\right)^{\prime}=\mathbf{x}^{\prime}=A \mathbf{x}+b=A\left(\mathbf{x}-\left(-A^{-1} b\right)\right)=A\left(\mathbf{x}-\mathbf{x}_{\mathrm{eq}}\right)=A \overline{\mathbf{x}}
$$

Therefore, the system reduces to the homogeneous system

$$
\overline{\mathbf{x}}^{\prime}=A \overline{\mathbf{x}}
$$

Example:

Reduce the following system to a homogeneous one:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+y+1 \\
\frac{d y}{d t}=4 x+y
\end{array} \quad \text { with } \quad A=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right), \quad b=\binom{1}{0}, \quad \mathbf{x}_{\mathrm{eq}}=\binom{1 / 3}{-4 / 3}\right.
$$

Homogeneous systems of two linear DEs (constant coefficients)

Theorem (Theorem 3.3.1)
Suppose that $\mathbf{x}_{1}=\mathbf{x}_{1}(t)$ and $\mathbf{x}_{\mathbf{2}}=\mathbf{x}_{\mathbf{2}}(t)$ are solutions of the homogeneous system

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

Then for any real (or complex) numbers c_{1}, c_{2},

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

is also a solution of the system.
This theorem provides a tool to generate solutions from two fixed solutions. It is known as the principle of superposition.

Definition

If $\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)$ for all t, then we say that \mathbf{x} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}, and we write it as: $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$.

Let $\mathbf{x}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)}$ and $\mathbf{x}_{2}(t)=\binom{x_{12}(t)}{x_{22}(t)}$ be two solutions of the system $\mathbf{x}^{\prime}=A \mathbf{x}$.

Definition

The Wronskian of \mathbf{x}_{1} and \mathbf{x}_{2} is the function $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]$ defined at t by the determinant

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|
$$

Definition

The solutions \mathbf{x}_{1} and \mathbf{x}_{2} of the system are said linearly dependent in an open interval l if there are constants c_{1}, c_{2} (not both zero and independent of t) such that

$$
c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=0 \text { for all } t \in I .
$$

Two solutions that are not linearly dependent are called linearly independent.
\mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent if and only if $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$ for all t in I.
Two solutions \mathbf{x}_{1} and \mathbf{x}_{2} that are linearly independent are said to form a fundamental set of solutions.

Remark: \mathbf{x}_{1} and \mathbf{x}_{2} are linearly dependent if and only if one is a constant multiple of the other: there is a constant k (independent of t) such that

$$
\mathbf{x}_{1}(t)=k \mathbf{x}_{2}(t) \text { for all } t \quad \text { or } \quad \mathbf{x}_{2}(t)=k \mathbf{x}_{1}(t) \text { for all } t .
$$

Theorem (Theorem 3.3.4)

Suppose \mathbf{x}_{1} and \mathbf{x}_{2} for two linearly independent solutions of the system $\mathbf{x}^{\prime}=A \mathbf{x}$. Then any solution of the above system is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{\mathbf{2}}(t)
$$

for some constants c_{1} and c_{2}. This is the general solution of the system. If, moreover, we fix an intitial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, where $\mathbf{x}_{0}=\binom{x_{10}}{x_{20}}$ is a constant vector, then the constants c_{1} and c_{2} are uniquely determined and the solution to the system is unique.

Conclusion:

- The general solution of a homogenous system of two linear first order DEs is a linear combination of two linearly independent solutions (=one is not a multiple of the other)
- To find the general solution it is enough to find two linearly independent solutions.
- An initial condition uniquely determines the constants c_{1} and c_{2} and hence yields a unique solution to an IVP.

The eigenvalues and eigenvectors of the matrix coefficients A allow us to find the two independent solutions we need to solve $\mathbf{x}^{\prime}=A \mathbf{x}$.

IDEA:

- The general solution of one linear homogenous DE $y^{\prime}=a y$, where a is a constant, is $y(t)=C e^{a t}$.
- If $A=\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right)$ then the system $\mathbf{x}^{\prime}=A \mathbf{x}$ is $\left\{\begin{array}{l}x_{1}^{\prime}=a_{1} x_{1} \\ x_{2}^{\prime}=a_{2} x_{2}\end{array}\right.$. So $x_{1}(t)=e^{a_{1} t}$ is a solution of the 1st DE and $\mathbf{x}(t)=\binom{x_{1}(t)}{0}=e^{a_{1} t}\binom{1}{0}$ is a solution of the system.
Here a_{1} is an eigenvalue of A and $\binom{1}{0}$ is an eigenvector with eigenvalue a_{1}.
Conclusion: We look for exponential solutions and use the eigenvalues of A.
- Suppose that v is eigenvector of A with eingenvalue λ, i.e. $A v=\lambda v$.
- $\left(e^{\lambda t} v\right)^{\prime}=\lambda e^{t \lambda} v$, so that $\left(e^{\lambda t} v\right)^{\prime}=e^{\lambda t}(\lambda v)=A\left(e^{\lambda t} v\right)$,
- Then $\mathbf{x}(t)=e^{t \lambda} v$ is a solution of the system $\mathbf{x}^{\prime}=A \mathbf{x}$.

