Section 3.4: Complex eigenvalues

 Case II: $\lambda_{1}=\lambda_{2} \in \mathbb{C}$ and $\lambda_{2}=\overline{\lambda_{1}}$To shorten the notation, write λ instead of λ_{1}.
So, we are supposing that A has two complex conjugate (and not real) eigenvalues:

$$
\lambda=\mu+i \nu \quad \text { and } \quad \bar{\lambda}=\mu-i \nu
$$

where μ, ν are real numbers.
In particular: λ and $\bar{\lambda}$ are distinct and non-zero.

- Eigenvectors $\mathbf{v}=\binom{v_{1}}{v_{2}}$ associated with complex eigenvalues have usually complex components $v_{1}=a_{1}+i b_{1}, v_{2}=a_{2}+i b_{2}$ (with $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{R}$).
- If $\mathbf{v}=\mathbf{a}+i \mathbf{b}=\binom{a_{1}}{a_{2}}+i\binom{b_{1}}{b_{2}}$ is an eigenvector of eigenvalue λ, i.e. $A \mathbf{v}=\lambda \mathbf{v}$ then $\bar{v}=\mathbf{a}-i \mathbf{b}=\binom{a_{1}}{a_{2}}-i\binom{b_{1}}{b_{2}}$ is eigenvector of eigenvalue $\bar{\lambda}$, i.e. $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$.
- Two linearly independent solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$ are

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

We want to have two real-valued solutions.

- $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}(t)} \quad$ [because $\bar{z} \bar{s}=\overline{z s}$ for $\left.z, s \in \mathbb{C}\right]$.
- Linear combinations of solutions are solutions (principle of superposition): since \mathbf{x}_{1} and $\mathbf{x}_{2}=\overline{\mathbf{x}_{1}}$ are solutions, so are

$$
\mathbf{u}=\frac{1}{2} \mathbf{x}_{1}+\frac{1}{2} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}+\overline{\mathbf{x}_{1}}}{2}=\operatorname{Re} \mathbf{x}_{1}
$$

and

$$
\mathbf{w}=\frac{1}{2 i} \mathbf{x}_{1}-\frac{1}{2 i} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}-\overline{\mathbf{x}_{1}}}{2 i}=\operatorname{Im} \mathbf{x}_{1}
$$

- $\mathbf{u}=\operatorname{Re} \mathbf{x}_{1}$ and $\mathbf{w}=\operatorname{Im} \mathbf{x}_{1}$ are real-valued solutions.
- Fact: \mathbf{u} and \mathbf{w} are linearly-independent.

Conclusion: The general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ is:

$$
\mathbf{x}(t)=C_{1} \mathbf{u}(t)+C_{2} \mathbf{w}(t)
$$

where C_{1}, C_{2} are constants.

Example:

- Determine the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
- Find the solution of the IVP for $\mathbf{x}^{\prime}=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\binom{1}{2}$.

