Section 3.4: Complex eigenvalues

 Case II: $\lambda_{1}=\lambda_{2} \in \mathbb{C}$ and $\lambda_{2}=\overline{\lambda_{1}}$To shorten the notation, write λ instead of λ_{1}.
So, we are supposing that A has two complex conjugate (and not real) eigenvalues:

$$
\lambda=\mu+i \nu \quad \text { and } \quad \bar{\lambda}=\mu-i \nu
$$

where μ, ν are real numbers.
In particular: λ and $\bar{\lambda}$ are distinct and non-zero.

- Eigenvectors $\mathbf{v}=\binom{v_{1}}{v_{2}}$ associated with complex eigenvalues have usually complex components $v_{1}=a_{1}+i b_{1}, v_{2}=a_{2}+i b_{2}$ (with $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{R}$).
- If $\mathbf{v}=\mathbf{a}+i \mathbf{b}=\binom{a_{1}}{a_{2}}+i\binom{b_{1}}{b_{2}}$ is an eigenvector of eigenvalue λ, i.e. $A \mathbf{v}=\lambda \mathbf{v}$ then $\bar{v}=\mathbf{a}-i \mathbf{b}=\binom{a_{1}}{a_{2}}-i\binom{b_{1}}{b_{2}}$ is eigenvector of eigenvalue $\bar{\lambda}$, i.e. $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$.
- Two linearly independent solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$ are

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

We want to have two real-valued solutions.

- $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}(t)} \quad$ [because $\bar{z} \bar{s}=\overline{z s}$ for $\left.z, s \in \mathbb{C}\right]$.
- Linear combinations of solutions are solutions (principle of superposition): since \mathbf{x}_{1} and $\mathbf{x}_{2}=\overline{\mathbf{x}_{1}}$ are solutions, so are

$$
\mathbf{u}=\frac{1}{2} \mathbf{x}_{1}+\frac{1}{2} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}+\overline{\mathbf{x}_{1}}}{2}=\operatorname{Re} \mathbf{x}_{1}
$$

and

$$
\mathbf{w}=\frac{1}{2 i} \mathbf{x}_{1}-\frac{1}{2 i} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}-\overline{\mathbf{x}_{1}}}{2 i}=\operatorname{Im} \mathbf{x}_{1}
$$

- $\mathbf{u}=\operatorname{Re} \mathbf{x}_{1}$ and $\mathbf{w}=\operatorname{Im} \mathbf{x}_{1}$ are real-valued solutions.
- Fact: \mathbf{u} and \mathbf{w} are linearly-independent.

Conclusion: The general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ is:

$$
\mathbf{x}(t)=C_{1} \mathbf{u}(t)+C_{2} \mathbf{w}(t)
$$

where C_{1}, C_{2} are constants.

Example:

- Determine the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

Example:

- Determine the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ General solution: $\mathbf{x}(t)=C_{1}\binom{\cos t}{-\sin t}+C_{2}\binom{\sin t}{\cos t}$, where C_{1}, C_{2} are constants and $t \in \mathbb{R}$.
- Find the solution of the IVP for $\mathbf{x}^{\prime}=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\binom{1}{2}$.

Example:

- Determine the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ General solution: $\mathbf{x}(t)=C_{1}\binom{\cos t}{-\sin t}+C_{2}\binom{\sin t}{\cos t}$, where C_{1}, C_{2} are constants and $t \in \mathbb{R}$.
- Find the solution of the IVP for $\mathbf{x}^{\prime}=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\binom{1}{2}$.

The trajectory in the phase plane is a circle.

Explicit expressions of u and w (general case):

- $\mathbf{u}(t)=\operatorname{Re} \mathbf{x}_{1}(t)=\operatorname{Re}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$
and
$\mathbf{w}(t)=\operatorname{Im} \mathbf{x}_{1}(t)=\operatorname{Im}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

Explicit expressions of u and w (general case):

- $\mathbf{u}(t)=\operatorname{Re} \mathbf{x}_{1}(t)=\operatorname{Re}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$
and
$\mathbf{w}(t)=\operatorname{Im} \mathbf{x}_{1}(t)=\operatorname{Im}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

For $z, s \in \mathbb{C}: \quad \operatorname{Re}(z s)=\operatorname{Re} z \operatorname{Re} s-\operatorname{Im} z \operatorname{Im} s$
$\operatorname{Im}(z s)=\operatorname{Re} z \operatorname{Im} s+\operatorname{Re} z \operatorname{Im} s$

Explicit expressions of u and w (general case):

- $\mathbf{u}(t)=\operatorname{Re} \mathbf{x}_{1}(t)=\operatorname{Re}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}-\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}
$$

and
$\mathbf{w}(t)=\operatorname{Im} \mathbf{x}_{1}(t)=\operatorname{Im}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
\begin{array}{ll}
\text { For } z, s \in \mathbb{C}: & \operatorname{Re}(z s)=\operatorname{Re} z \operatorname{Re} s-\operatorname{Im} z \operatorname{Im} s \\
& \operatorname{Im}(z s)=\operatorname{Re} z \operatorname{Im} s+\operatorname{Re} z \operatorname{Im} s
\end{array}
$$

Explicit expressions of u and w (general case):

- $\mathbf{u}(t)=\operatorname{Re} \mathbf{x}_{1}(t)=\operatorname{Re}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}-\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}
$$

and

$$
\begin{aligned}
& \mathbf{w}(t)=\operatorname{Im} \mathbf{x}_{1}(t)= \\
& \\
& = \\
& =\operatorname{Re}\left(e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}+\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}\right. \\
& \hline \text { For } z, s \in \mathbb{C}: \quad \\
& \quad \operatorname{Re}(z s)=\operatorname{Re} z \operatorname{Re} s-\operatorname{Im} z \operatorname{Im} s \\
& \\
& \\
& \operatorname{Im}(z s)=\operatorname{Re} z \operatorname{Im} s+\operatorname{Re} z \operatorname{Im} s
\end{aligned}
$$

Explicit expressions of u and w (general case):

- $\mathbf{u}(t)=\operatorname{Re} \mathbf{x}_{1}(t)=\operatorname{Re}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}-\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}
$$

and
$\mathbf{w}(t)=\operatorname{Im} \mathbf{x}_{1}(t)=\operatorname{Im}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}+\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}
$$

For $z, s \in \mathbb{C}: \quad \operatorname{Re}(z s)=\operatorname{Re} z \operatorname{Re} s-\operatorname{Im} z \operatorname{Im} s$ $\operatorname{Im}(z s)=\operatorname{Re} z \operatorname{Im} s+\operatorname{Re} z \operatorname{Im} s$

- For $\mu, \nu, t \in \mathbb{R}: \quad e^{(\mu+i \nu) t}=e^{\mu t} e^{i \nu t}=e^{\mu t}(\cos (\nu t)+i \sin (\nu t))$.

Hence: $\quad \operatorname{Re} e^{(\mu+i \nu) t}=e^{\mu t} \cos (\nu t)$
$\operatorname{Im} e^{(\mu+i \nu) t}=e^{\mu t} \sin (\nu t)$.

Explicit expressions of u and w (general case):

- $\mathbf{u}(t)=\operatorname{Re} \mathbf{x}_{1}(t)=\operatorname{Re}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}-\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}
$$

and
$\mathbf{w}(t)=\operatorname{Im} \mathbf{x}_{1}(t)=\operatorname{Im}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}+\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}
$$

For $z, s \in \mathbb{C}: \quad \begin{array}{ll}\operatorname{Re}(z s)=\operatorname{Re} z \operatorname{Re} s-\operatorname{Im} z \operatorname{Im} s \\ & \operatorname{Im}(z s)=\operatorname{Re} z \operatorname{Im} s+\operatorname{Re} z \operatorname{Im} s\end{array}$

- For $\mu, \nu, t \in \mathbb{R}: \quad e^{(\mu+i \nu) t}=e^{\mu t} e^{i \nu t}=e^{\mu t}(\cos (\nu t)+i \sin (\nu t))$.

Hence: $\quad \operatorname{Re} e^{(\mu+i \nu) t}=e^{\mu t} \cos (\nu t)$
$\operatorname{Im} e^{(\mu+i \nu) t}=e^{\mu t} \sin (\nu t)$.

- For $\mathbf{v}=\mathbf{a}+i \mathbf{b}=\binom{a_{1}}{a_{2}}+i\binom{b_{1}}{b_{2}}$, we have $\operatorname{Re} \mathbf{v}=\mathbf{a}$ and $\operatorname{Im} \mathbf{v}=\mathbf{b}$.

Explicit expressions of u and w (general case):

- $\mathbf{u}(t)=\operatorname{Re} \mathbf{x}_{1}(t)=\operatorname{Re}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}-\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}
$$

and
$\mathbf{w}(t)=\operatorname{Im} \mathbf{x}_{1}(t)=\operatorname{Im}\left(e^{(\mu+i \nu) t} \mathbf{v}\right)$

$$
=\operatorname{Re} e^{(\mu+i \nu) t} \operatorname{Im} \mathbf{v}+\operatorname{Im} e^{(\mu+i \nu) t} \operatorname{Re} \mathbf{v}
$$

For $z, s \in \mathbb{C}: \quad \begin{array}{ll}\operatorname{Re}(z s)=\operatorname{Re} z \operatorname{Re} s-\operatorname{Im} z \operatorname{Im} s \\ & \operatorname{Im}(z s)=\operatorname{Re} z \operatorname{Im} s+\operatorname{Re} z \operatorname{Im} s\end{array}$

- For $\mu, \nu, t \in \mathbb{R}: \quad e^{(\mu+i \nu) t}=e^{\mu t} e^{i \nu t}=e^{\mu t}(\cos (\nu t)+i \sin (\nu t))$.

Hence: $\quad \operatorname{Re} e^{(\mu+i \nu) t}=e^{\mu t} \cos (\nu t)$

$$
\operatorname{Im} e^{(\mu+i \nu) t}=e^{\mu t} \sin (\nu t)
$$

- For $\mathbf{v}=\mathbf{a}+i \mathbf{b}=\binom{a_{1}}{a_{2}}+i\binom{b_{1}}{b_{2}}$, we have $\operatorname{Re} \mathbf{v}=\mathbf{a}$ and $\operatorname{Im} \mathbf{v}=\mathbf{b}$.

Conclusion:

$$
\begin{aligned}
& \mathbf{u}(t)=e^{\mu t}[\cos (\nu t) \mathbf{a}-\sin (\nu t) \mathbf{b}] \\
& \mathbf{w}(t)=e^{\mu t}[\cos (\nu t) \mathbf{b}+\sin (\nu t) \mathbf{a}]
\end{aligned}
$$

Behavior of the solutions

Since $\operatorname{det}(A)=\lambda \bar{\lambda} \neq 0$

$$
\mathbf{x}_{\mathrm{eq}}=\binom{0}{0}
$$

is the unique equilibrium (or critical) point.
It corresponds to the origin $(0,0)$ of the phase plane
The solutions

$$
\begin{aligned}
& \mathbf{u}(t)=e^{\mu t}[\cos (\nu t) \mathbf{a}-\sin (\nu t) \mathbf{b}] \\
& \mathbf{w}(t)=e^{\mu t}[\cos (\nu t) \mathbf{b}+\sin (\nu t) \mathbf{a}] .
\end{aligned}
$$

have an oscillatory behavior as functions of t.
The nature of the oscillation depends on $\mu=\operatorname{Re} \lambda$.

$$
\begin{aligned}
& \mathbf{u}(t)=e^{\mu t}[\cos (\nu t) \mathbf{a}-\sin (\nu t) \mathbf{b}] \\
& \mathbf{w}(t)=e^{\mu t}[\cos (\nu t) \mathbf{b}+\sin (\nu t) \mathbf{a}] .
\end{aligned}
$$

- $\mu=0$, i.e. $\lambda=i \nu$:
$\mathbf{u}(t)$ and $\mathbf{v}(t)$ are periodic function of t of period $T=\frac{2 \pi}{\nu}$.
In the phase plane:
The trajectories are ellipses.
The origin $(0,0)$ is a called a center and it is said to be stable.
- $\mu<0$:

As functions of t, the amplitude of the oscillations of $\mathbf{u}(t)$ and $\mathbf{v}(t)$ decays exponentially.
In the phase plane:
The trajectories spiral around $(0,0)$ and approach $(0,0)$ at $t \rightarrow+\infty$.
The origin $(0,0)$ is a called a spiral sink and it is said to be asymptotically stable.

- $\mu>0$:

As functions of t, the amplitude of the oscillations of $\mathbf{u}(t)$ and $\mathbf{v}(t)$ grows exponentially. In the phase plane:
The trajectories spiral out of $(0,0)$ as t increases.
The origin $(0,0)$ is a called a spiral source and it is said to be unstable.

