Section 3.5: Repeated eigenvalues

This is what we called Case Ia): two (necessarily real) equal eigenvalues $\lambda_1 = \lambda_2$ of *A*. To shorten the notation, write λ instead of λ_1 . We suppose $\lambda \neq 0$.

A matrix A with two repeated eigenvalues can have one or two linearly independent eigenvectors.

The form and behavior of the solutions of $\mathbf{x}' = A\mathbf{x}$ is different according to these two situations.

Example:

Show that
$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ have one repeated eigenvalue λ .

Find λ .

Show that A has two linearly independent eigenvectors of eigenvalue λ whereas B does not.

3

イロト 不得 トイヨト イヨト

Consider the system $\mathbf{x}' = A\mathbf{x}$ where A is a 2 × 2 matrix with repeted eigenvalue $\lambda \neq 0$.

If there are two linearly independent eigenvectors v₁ and v₁ of eigenvalue λ.
Then two linearly independent solutions of x' = Ax are

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{\lambda t} \mathbf{v}_2$

The general solution is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t) = C_1 e^{\lambda t} \mathbf{v}_1 + C_2 e^{\lambda t} \mathbf{v}_2.$$

If there is only one linearly independent eigenvector v₁ of eigenvalue λ.
Then two linearly independent solutions of x' = Ax are

$$\mathbf{x}_1(t) = t e^{\lambda t} \mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{\lambda t} \mathbf{w}$

where **w** satisfies $(A - \lambda I)$ **w** = **v**₁

(we say that **w** is a *generalized eigenvector* corresponding to the eigenvalue λ). The **general solution** is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t) = C_1 e^{\lambda t} \mathbf{v}_1 + C_2 t e^{\lambda t} \mathbf{w}_1$$

 $\mathbf{x}_{eq} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the unique critical point. It is the origin (0,0) of the phase plane.

TABLE 3.5.1	Phase portraits for $\mathbf{x}' = \mathbf{A}\mathbf{x}$ when \mathbf{A} has a single repeated eigenvalue.			
	Nature of A and Eigenvalues	Sample Phase Portrait	Type of Critical Point	Stability
	$\mathbf{A} = \begin{pmatrix} \lambda & 0\\ 0 & \lambda \end{pmatrix}$ $\lambda > 0$ $\mathbf{A} = \begin{pmatrix} \lambda & 0\\ 0 & \lambda \end{pmatrix}$ $\lambda < 0$	$\overrightarrow{\times}$	(0, 0) is an unstable proper node. Note: (0, 0) is also called an unstable star node. (0, 0) is a stable proper node. Note: (0, 0) is also called a stable star	Unstable Asymptotically stable
	A is not diagonal. $\lambda > 0$		node. (0, 0) is an unstable improper node. Note: (0, 0) is also called an unstable decenerate node	Unstable
	A is not diagonal. $\lambda < 0$		(0, 0) is a stable improper node . <i>Note</i> : (0, 0) is also called a stable degenerate node .	Asymptotically stable

J.BRENNAN & W. BOYCE, DIFFERENTIAL EQUATIONS, P. 184