Chapter 4: Second Order Linear Equations

4.1: Definitions and Examples

Definition

A second order differential equation is said to be linear if it can be written in standard form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where p, q and g are arbitrary functions of the independent variable t.
If the function is g identically zero, then the equation is said to be homogeneous. It is said to be nonhomogeneous otherwise.
The equation is said to be a constant coefficient equation if the functions p, q and g are constant (i.e. do not depend on t). Otherwise, it is said to have variable coefficients.

Example: the spring-mass system

A mass of magnitude m is attached to the lower end of a spring of natural lenght l. The mass causes an extension L of the spring.
The spring has lenght $I+L$ at the equilibrium position.
Goal: to study the motion of the mass (along a vertical line) caused by external forces (the vibration problem).

Model:

vertical y-axis, positive direction downward, origin at the equilibrium position. $y(t)=$ position of the mass at time t $y^{\prime}(t)=$ velocity of the mass at time t Equilibrium position: $y(0)=0$.

Newton's law of motion:

$$
m y^{\prime \prime}(t)=F_{\text {net }}(t)
$$

where:

$y^{\prime \prime}(t)=$ acceleration of the mass at time t
$F_{\text {net }}(t)=$ the net force acting on the mass, with different components.

Figure 4.3 .1 in: J. Brannan \& W. Boyce, Differential Equations

The components of the net force $F_{\text {net }} \quad$ [in pounds (Ib) or Newtons (N)]:

- Gravitational force (or weight of the mass W): it acts downward and is equal to $W=m g$ (where $m=$ mass, $g=$ acceleration of gravity $=32 \mathrm{ft} / \mathrm{s}^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2}$).
- Spring force F_{s} : the force exerced on the mass by the spring. It is proportional to the total elongation $L+y$ of the spring and opposite to the displacement, i.e.

$$
F_{s}(t)=-k(L+y(t)) \quad \text { (Hooke's law) }
$$

where $k>0$ is the spring constant (or stiffness of the spring).
At $y=0$ the mass is in equilibrium. So the spring and the gravitational force balance each others: $m g-k L=0$.

- Damping force (or resistive force) F_{d} : it may arise from several sources such as air resistance, friction, or additional devices. It is proportional and opposite to the velocity of the mass, i.e.

$$
F_{d}(t)=-\gamma y^{\prime}(t)
$$

where $\gamma>0$ is the damping constant.

- External forces or inputs: Any possible additional force $F(t)$.

Hence: $\quad F_{\text {net }}(t)=W+F_{s}(t)+F_{d}(t)+F(t)=-k y(t)-\gamma y^{\prime}(t)+F(t)$

With $F_{\text {net }}(t)=-k y(t)-\gamma y^{\prime}(t)+F(t)$, Newton's law of motion: $m y^{\prime \prime}(t)=F_{\text {net }}(t)$ becomes:

$$
m y^{\prime \prime}(t)+\gamma y^{\prime}(t)+k y(t)=F(t)
$$

The value of k is obtained from $m g-k L=0$.
A vibration problem (or oscillator problem) consists in this equation together with two initial conditions:

$$
y(0)=y_{0} \quad \text { and } \quad y^{\prime}(0)=v_{0}
$$

Four important special cases:
Unforced, undamped oscillator: $\quad m y^{\prime \prime}(t)+k y(t)=0$
Unforced, damped oscillator: $\quad m y^{\prime \prime}(t)+\gamma y^{\prime}(t)+k y(t)=0$
Forced, undamped oscillator: $\quad m y^{\prime \prime}(t)+k y(t)=F(t)$
Forced, damped oscillator: $\quad m y^{\prime \prime}(t)+\gamma y^{\prime}(t)+k y(t)=F(t)$

Example:

A mass weighting 2 lb stretches a spring 6 in . The mass is pulled down an additional 3 in and at time $t=0$ it is released at a velocity of $1 \mathrm{ft} / \mathrm{s}$ in the upward direction. Assume there is no damping.

Write down the appropriate initial value problem.

