
Section 4.2: 2nd order linear homogeneous equations
From Section 3.2: every 2nd order DE can be converted into a system of two first
order DE’s.
In the linear (nonhomogenous) case:

y ′′ + p(t)y ′ + q(t)y = g(t)

the corresponding system is obtained by introducing the state variables:

x1 = y and x2 = y ′

We obtain the system of two linear (nonhomogenous) first order DE’s:{
x ′

1 = x2

x ′
2 = −q(t)x1 − p(t)x2 + g(t) .

An initial condition: y(t0) = y0, y ′(t0) = y1

becomes: x1(t0) = y0, x2(t0) = y1.

Matrix notation:

x′ =

(
0 1
−q(t) −p(t)

)
x +

(
0

g(t)

)
where x =

(
x1

x2

)
=

(
y
y ′

)
with initial condition x(t0) = x0 =

(
y0

y1

)
.
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From Theorem 3.2.1:

Theorem (Theorem 4.2.1)
Consider the second order linear differential equation

y ′′ + p(t)y ′ + q(t)y = g(t)

Suppose the functions p, q and g are continuous on some open interval I.
Let t0 be an element of I.

Then there exists a unique solution of the DE satisfying the initial condition y(t0) = y0

and y ′(t0) = y1, where y0 and y1 are any given numbers.

Example:
Determine the longest interval in which the initial value problem

(t2 − 1)y ′′ − 3ty ′ + 4y = sin(t) with y(0) = 2, y ′(0) = 1

have a twice differentiable solution.
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Linear operators and 2nd order linear homogenous
DEs

Definition
The operator of differentiation is the map D : y 7→ D[y ] defined by

D[y ](t) =
dy
dt

(t) for all t .

The operator of multiplication by the function p is the operator p : y 7→ p[y ]
defined by

p[y ](t) = p(t)y(t) for all t .

Both D and p are linear operators, that is for all scalars c1, c2 and functions y1, y2 we
have:

D[c1y1 + c2y2] = c1Dy1 + c2Dy2

p[c1y1 + c2y2] = c1py1 + c2py2

Example: Let y be twice differentiable on the interval I. Then D2[y ] = D[D[y ]] is the

function with value at t ∈ I given by D2[y ](t) = D[D[y ]](t) =
d
dt

(dy
dt

)
(t) =

d2y
dt2 (t).
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Let p, q two continuous functions on the interval I and set

L = D2 + pD + q =
d2

dt2 + p
d
dt

+ q

We can apply L to any function y so that y ′, y ′′ exist on I.
If y , y ′, y ′′ are continuous on I then

L[y ] = y ′′ + py ′ + q

is a continuous function on I.

The value of L[y ] at t ∈ I is

L[y ](t) = y ′′(t) + p(t)y ′(t) + q(t) .

The homogeneous linear differential equation y ′′ + p(t)y ′ + q(t)y = 0 can be
rewritten as L[y ] = 0.
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Principle of superposition for linear homogeneous DEs

Theorem (Theorem 4.2.2, Corollary 4.2.3)
L = D2 + pD + q is a linear operator, i.e. for every twice differentiable function y1, y2

on I and every constants c1, c2 we have

L[c1y1 + c2y2] = c1L[y1] + c2L[y2]

If y1 and y2 are two solutions of the homogeneous differential equation L[y ] = 0, so is
any linear combination c1y1 + c2y2 of y1 and y2 (where c1 and c2 are arbitrary
constants):

L[c1y1 + c2y2] = c1L[y1] + c2L[y2] = 0 .
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We can extend the notion of linear operators to the case of a homogeneous system of
differential equations:

x′ = P(t)x

where the entries of the matrix P are continuous on an interval I.

The operator K defined by
K[x] = x′ − P(t)x

can be applied to any vector x for which the components are continuously
differentiable on I.

Theorem (Theorem 4.2.4, Corollary 4.2.5)
K is a linear operator, i.e. for every continuously differentiable vector functions x1, x2

on I and constants c1, c2, we have

K[c1x1 + c2x2] = c1K[x1] + c2K[x2] .

In particular, if x1 and x2 are two solutions of the homogeneous differential equations
K[x] = 0, so is any linear combination c1x1 + c2x2 of x1 and x2, where c1 and c2 are
constants.
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Wronskian and fundamental solutions
Recall from Section 3.3: the Wronskian of two vector functions

x1(t) =
(

x11(t)
x21(t)

)
and x2 =

(
x12(t)
x22(t)

)
on the interval I is the function W [x1, x2] on I defined by

W [x1, x2](t) =
∣∣∣∣x11(t) x12(t)
x21(t) x22(t)

∣∣∣∣ .
Theorem (Theorem 4.2.6)
Let x1 and x2 be two solutions of the homogeneous system of two linear DE
x′ = P(t)x. If the Wronskian W [x1, x2] is nonzero on the interval I, then x1 and x2 form
a fundamental set of solutions. The general solution of x′ = P(t)x on I is

x(t) = c1x1(t) + c2x2(t)

where c1, c2 are arbitrary constants.

An initial condition x(t0) = x0 determines the constants c1 and c2 uniquely.
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We can apply Theorem 4.2.6 to the system

x′ =

(
0 1
−q(t) −p(t)

)
x

associated with the 2nd order homogenous linear differential equation

y ′′ + p(t)y ′ + q(t)y = 0

Recall the change of variables: x1 = y and x2 = y ′, so that x =

(
x1

x2

)
.

The functions y1 and y2 are solutions of y ′′ + p(t)y ′ + q(t)y = 0 if and only if the

vector functions x1 =

(
y1

y ′
1

)
and x2 =

(
y2

y ′
2

)
are solutions of the associated system.

Moreover: W [x1, x2](t) =
∣∣∣∣y1(t) y2(t)
y ′

1(t) y ′
2(t)

∣∣∣∣ .
This motivates the following definition:

Definition
The Wronskian W [y1, y2] of the two solutions y1, y2 is the function defined for t ∈ I by

W [y1, y2](t) =
∣∣∣∣y1(t) y2(t)
y ′

1(t) y ′
2(t)

∣∣∣∣ .
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Theorem 4.2.6 applied to the system of DE’s associated with the 2nd order
homogenous linear differential equation

y ′′ + p(t)y ′ + q(t)y = 0

yields the following theorem.

Theorem (Theorem 4.2.7)
Suppose that y1 and y2 are two solutions of y ′′ + p(t)y ′ + q(t)y = 0.
If the Wronskian W [y1, y2] of y1 and y2 is nonzero on the interval I, then y1 and y2 form
a fundamental set of solutions. The general solution is given by

y(t) = c1y1(t) + c2y2(t)

where c1, c2 are arbitrary constants.
Two initial conditions y(t0) = y0 and y ′(t0) = y1 determine the constants c1, c2

uniquely.
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W [y1, y2](t) =
∣∣∣∣y1(t) y2(t)
y ′

1(t) y ′
2(t)

∣∣∣∣ .
Examples:

Find the Wronskian of the functions x and xex .

If the Wronskian W of f and g is 3e2t , and if f (t) = e4t , find the function g(t).

10 / 12



How to compute the Wronskian in practice?

Theorem (Theorem 4.2.8, Corollary 4.2.9, Abel Theorem)
The Wronskian W of two solutions of the system x′ = P(t)x is given by

W (t) = c exp
∫ (

p11(t) + p22(t)
)
dt

for some constant number c depending on the solutions.
Here: p11(t) + p22(t) = traceP(t)
The Wronskian of two solutions of the equation y ′′ + p(t)y ′ + q(t)y = 0 is given by

W (t) = c exp
(
−
∫

p(t)dt
)

where c is a constant depending on the solutions.

In particular, the Wronskian is either never zero or always zero in the open interval I.
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Method of reduction of order
Consider the equation y ′′ + p(t)y ′ + q(t)y = 0 of which we know one solution y1.
The method of reduction of order provides a second solution y2 such that {y1, y2} is a
fundamental system.

Suppose y1 is a solution of this equation.

Put y2(t) = v(t)y1(t) and find a condition on v so that y2 is a solution of the
equation.

Substituting y2 in the DE equation, one gets:

y1v ′′ + (2y ′
1 + py1)v ′ = 0

Letting w = v ′, we obtain a first-order DE

y1w ′ + (2y ′
1 + py1)w = 0

Solve and integrate to find v and then y2.

Example: Consider the differential equation t2y ′′ + 2ty ′ − 2y = 0, for t > 0.
Check that y1(t) = t is a solution. Use the reduction of order to find a second solution
y2 such that {y1, y2} is a fundamental set of solutions on (0,+∞).
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