Section 4.2: 2nd order linear homogeneous equations

From Section 3.2: every 2nd order DE can be converted into a system of two first order DE's.
In the linear (nonhomogenous) case:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

the corresponding system is obtained by introducing the state variables:

$$
x_{1}=y \quad \text { and } \quad x_{2}=y^{\prime}
$$

We obtain the system of two linear (nonhomogenous) first order DE's:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}= \\
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2} \\
x_{2}+g(t) .
\end{array}\right.
$$

An initial condition: $\quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$
becomes: $\quad x_{1}\left(t_{0}\right)=y_{0}, x_{2}\left(t_{0}\right)=y_{1}$.
Matrix notation:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x}+\binom{0}{g(t)} \quad \text { where } \quad \mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{y}{y^{\prime}}
$$

with initial condition

$$
\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}=\binom{y_{0}}{y_{1}} .
$$

From Theorem 3.2.1:

Theorem (Theorem 4.2.1)

Consider the second order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Suppose the functions p, q and g are continuous on some open interval I. Let t_{0} be an element of I.
Then there exists a unique solution of the DE satisfying the initial condition $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{1}$, where y_{0} and y_{1} are any given numbers.

Example:

Determine the longest interval in which the initial value problem

$$
\left(t^{2}-1\right) y^{\prime \prime}-3 t y^{\prime}+4 y=\sin (t) \quad \text { with } \quad y(0)=2, y^{\prime}(0)=1
$$

have a twice differentiable solution.

Linear operators and 2nd order linear homogenous DEs

Definition

The operator of differentiation is the map $D: y \mapsto D[y]$ defined by

$$
D[y](t)=\frac{d y}{d t}(t) \quad \text { for all } t .
$$

The operator of multiplication by the function p is the operator $p: y \mapsto p[y]$ defined by

$$
p[y](t)=p(t) y(t) \quad \text { for all } t .
$$

Both D and p are linear operators, that is for all scalars c_{1}, c_{2} and functions y_{1}, y_{2} we have:

$$
\begin{aligned}
D\left[c_{1} y_{1}+c_{2} y_{2}\right] & =c_{1} D y_{1}+c_{2} D y_{2} \\
p\left[c_{1} y_{1}+c_{2} y_{2}\right] & =c_{1} p y_{1}+c_{2} p y_{2}
\end{aligned}
$$

Example: Let y be twice differentiable on the interval I. Then $D^{2}[y]=D[D[y]]$ is the function with value at $t \in I$ given by $D^{2}[y](t)=D[D[y]](t)=\frac{d}{d t}\left(\frac{d y}{d t}\right)(t)=\frac{d^{2} y}{d t^{2}}(t)$.

Let p, q two continuous functions on the interval $/$ and set

$$
L=D^{2}+p D+q=\frac{d^{2}}{d t^{2}}+p \frac{d}{d t}+q
$$

We can apply L to any function y so that $y^{\prime}, y^{\prime \prime}$ exist on l. If $y, y^{\prime}, y^{\prime \prime}$ are continuous on I then

$$
L[y]=y^{\prime \prime}+p y^{\prime}+q
$$

is a continuous function on I.
The value of $L[y]$ at $t \in I$ is

$$
L[y](t)=y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t)
$$

The homogeneous linear differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ can be rewritten as $L[y]=0$.

Principle of superposition for linear homogeneous DEs

Theorem (Theorem 4.2.2, Corollary 4.2.3)

$L=D^{2}+p D+q$ is a linear operator, i.e. for every twice differentiable function y_{1}, y_{2} on I and every constants c_{1}, c_{2} we have

$$
L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]
$$

If y_{1} and y_{2} are two solutions of the homogeneous differential equation $L[y]=0$, so is any linear combination $c_{1} y_{1}+c_{2} y_{2}$ of y_{1} and y_{2} (where c_{1} and c_{2} are arbitrary constants):

$$
L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]=0
$$

We can extend the notion of linear operators to the case of a homogeneous system of differential equations:

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}
$$

where the entries of the matrix \mathbf{P} are continuous on an interval I.
The operator \mathbf{K} defined by

$$
\mathbf{K}[\mathbf{x}]=\mathbf{x}^{\prime}-\mathbf{P}(t) \mathbf{x}
$$

can be applied to any vector \mathbf{x} for which the components are continuously differentiable on I.

Theorem (Theorem 4.2.4, Corollary 4.2.5)

\mathbf{K} is a linear operator, i.e. for every continuously differentiable vector functions $\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}$ on I and constants c_{1}, c_{2}, we have

$$
\mathbf{K}\left[c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}\right]=c_{1} \mathbf{K}\left[\mathbf{x}_{1}\right]+c_{2} \mathbf{K}\left[\mathbf{x}_{2}\right]
$$

In particular, if \mathbf{x}_{1} and \mathbf{x}_{2} are two solutions of the homogeneous differential equations $\mathbf{K}[\mathbf{x}]=0$, so is any linear combination $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$ of \mathbf{x}_{1} and \mathbf{x}_{2}, where c_{1} and c_{2} are constants.

Wronskian and fundamental solutions

Recall from Section 3.3: the Wronskian of two vector functions

$$
\mathbf{x}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)} \quad \text { and } \quad \mathbf{x}_{2}=\binom{x_{12}(t)}{x_{22}(t)}
$$

on the interval $/$ is the function $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]$ on $/$ defined by

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right| .
$$

Theorem (Theorem 4.2.6)

Let \mathbf{x}_{1} and \mathbf{x}_{2} be two solutions of the homogeneous system of two linear DE $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$. If the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]$ is nonzero on the interval I, then \mathbf{x}_{1} and \mathbf{x}_{2} form a fundamental set of solutions. The general solution of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on I is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

where c_{1}, c_{2} are arbitrary constants.
An initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ determines the constants c_{1} and c_{2} uniquely.

We can apply Theorem 4.2.6 to the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x}
$$

associated with the 2nd order homogenous linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Recall the change of variables: $x_{1}=y$ and $x_{2}=y^{\prime}$, so that $\mathbf{x}=\binom{x_{1}}{x_{2}}$.
The functions y_{1} and y_{2} are solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ if and only if the vector functions $\mathbf{x}_{1}=\binom{y_{1}}{y_{1}^{\prime}}$ and $\mathbf{x}_{2}=\binom{y_{2}}{y_{2}^{\prime}}$ are solutions of the associated system.
Moreover: $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right|$.
This motivates the following definition:

Definition

The Wronskian $W\left[y_{1}, y_{2}\right]$ of the two solutions y_{1}, y_{2} is the function defined for $t \in I$ by

$$
W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|
$$

Theorem 4.2.6 applied to the system of DE's associated with the 2nd order homogenous linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

yields the following theorem.

Theorem (Theorem 4.2.7)

Suppose that y_{1} and y_{2} are two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. If the Wronskian $W\left[y_{1}, y_{2}\right]$ of y_{1} and y_{2} is nonzero on the interval I, then y_{1} and y_{2} form a fundamental set of solutions. The general solution is given by

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

where c_{1}, c_{2} are arbitrary constants.
Two initial conditions $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{1}$ determine the constants c_{1}, c_{2} uniquely.
$W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right|$.

Examples:

- Find the Wronskian of the functions x and $x e^{x}$.
- If the Wronskian W of f and g is $3 e^{2 t}$, and if $f(t)=e^{4 t}$, find the function $g(t)$.

How to compute the Wronskian in practice?

Theorem (Theorem 4.2.8, Corollary 4.2.9, Abel Theorem)

The Wronskian W of two solutions of the system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ is given by

$$
W(t)=c \exp \int\left(p_{11}(t)+p_{22}(t)\right) d t
$$

for some constant number c depending on the solutions.
Here: $p_{11}(t)+p_{22}(t)=\operatorname{trace} \mathbf{P}(t)$
The Wronskian of two solutions of the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ is given by

$$
W(t)=c \exp \left(-\int p(t) d t\right)
$$

where c is a constant depending on the solutions. In particular, the Wronskian is either never zero or always zero in the open interval I.

Method of reduction of order

Consider the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ of which we know one solution y_{1}. The method of reduction of order provides a second solution y_{2} such that $\left\{y_{1}, y_{2}\right\}$ is a fundamental system.

- Suppose y_{1} is a solution of this equation.
- Put $y_{2}(t)=v(t) y_{1}(t)$ and find a condition on v so that y_{2} is a solution of the equation.
- Substituting y_{2} in the DE equation, one gets:

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

- Letting $w=v^{\prime}$, we obtain a first-order DE

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0
$$

- Solve and integrate to find v and then y_{2}.

Example: Consider the differential equation $t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0$, for $t>0$.
Check that $y_{1}(t)=t$ is a solution. Use the reduction of order to find a second solution y_{2} such that $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions on $(0,+\infty)$.

