Section 4.2: 2nd order linear homogeneous equations

From Section 3.2: every 2nd order DE can be converted into a system of two first
order DE’s.

In the linear (nonhomogenous) case:
y'+pt)y +a(t)y = g(t)

the corresponding system is obtained by introducing the state variables:
xx=y and =y

We obtain the system of two linear (nonhomogenous) first order DE’s:

X = Xo
X3 =—q(t)x1 — p(t)x2 + g(t).

An initial condition:  y(t) = Yo, ¥'(t) = »1
becomes:  xi(t) = yo, X(b) = ¥1.

Matrix notation:

= (g o)t (o) e x=(3)=())

with initial condition X(h) = X0 = (
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From Theorem 3.2.1:

Theorem (Theorem 4.2.1)

Consider the second order linear differential equation

Yy +p)y" +aq(t)y = g(t)
Suppose the functions p, q and g are continuous on some open interval |.
Let ty be an element of I.

Then there exists a unique solution of the DE satisfying the initial condition y(f) = yo
and y’'(t) = y1, where yo and y; are any given numbers.

4

Example:
Determine the longest interval in which the initial value problem

(f—1)y” =3ty +4y =sin(t) with  y(0)=2, y'(0) =1

have a twice differentiable solution.
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Linear operators and 2nd order linear homogenous
DEs

Definition
The operator of differentiation is the map D : y — D[y] defined by

Dly](t) = %(1‘) for all ¢.

The operator of multiplication by the function p is the operator p: y — p[y]
defined by

pWI(t) = p(t)y(t)  forall t.

v

Both D and p are linear operators, that is for all scalars c1, ¢; and functions y;, y» we
have:

Dlciys + coys] = c¢1Dys + coDy»
plciyr 4+ coye] = Cipyr + Copye
Example: Let y be twice differentiable on the interval /. Then D2[y] D[D[y]] is the

function with value at t € / given by D2[y](t) = DID[Y]I(t) = = (‘Z}; )( )= dz‘2 Y (t).



Let p, g two continuous functions on the interval / and set
2
D _4 ¢
L=D"+pD+a="gg +Pg T4

We can apply L to any function y so that y’, y”’ exist on /.
If y, y', y" are continuous on / then

Lyl=y"+py' +q
is a continuous function on /.
The value of L[y] at t € lis

Ly)(t) = y"(1) + p(t)y' (1) + q(1) -

The homogeneous linear differential equation y” + p(t)y’ + g(t)y = 0 can be
rewritten as L[y] = 0.
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Principle of superposition for linear homogeneous DEs

Theorem (Theorem 4.2.2, Corollary 4.2.3)

L = D? + pD + q is a linear operator, i.e. for every twice differentiable function yi, y»
on | and every constants cy, ¢, we have

Lleiys + coyz] = ciL[ys] + caL]ye]

If y1 and y» are two solutions of the homogeneous differential equation L[y] = 0, so is
any linear combination ¢y, + c.y» of y1 and y» (where ¢, and ¢, are arbitrary
constants):

Llciys + coye] = ciL[y1] + coLy2] = 0.




We can extend the notion of linear operators to the case of a homogeneous system of
differential equations:
x' = P(f)x
where the entries of the matrix P are continuous on an interval /.
The operator K defined by
K[x] = x' — P(t)x

can be applied to any vector x for which the components are continuously
differentiable on /.

Theorem (Theorem 4.2.4, Corollary 4.2.5)

K is a linear operator, i.e. for every continuously differentiable vector functions X1, X2
on | and constants ¢y, ¢, we have

K[C1 X1 + Cng] =C K[X1] + CgK[Xz] .

In particular, if x4 and xz are two solutions of the homogeneous differential equations
K[x] = 0, so is any linear combination c1X1 + ;X2 of X1 and X2, where ¢ and ¢, are
constants.




Wronskian and fundamental solutions

Recall from Section 3.3: the Wronskian of two vector functions

o X11(t) _ X12(t)
X1(t) = <X21(t)) and Xo = (Xzz(f)
on the interval / is the function W{x4, X2] on / defined by

X114 (t) X12(f)

Wi, xel(t) =1 (1) xeat)|

Theorem (Theorem 4.2.6)

Let x4 and x2 be two solutions of the homogeneous system of two linear DE
x' = P(t)x. If the Wronskian W([x4, X2] is nonzero on the interval I, then x, and x> form
a fundamental set of solutions. The general solution of X' = P(t)x on | is

X(T) = C1X1(t) + CzXz(T)

where ¢y, ¢, are arbitrary constants.
An initial condition x(t)) = Xo determines the constants ¢, and ¢, uniquely.

D 4 44 7712



We can apply Theorem 4.2.6 to the system

X = < 0 ! ) X
—q(t)  —p(t)
associated with the 2nd order homogenous linear differential equation
y'+p(t)y +q(t)y =0
Recall the change of variables: x; = y and x» = y’, so that x = (?)
2

The functions y; and y» are solutions of y”’ + p(t)y’ + q(t)y = 0 if and only if the
vector functions x; = Gj ‘,) and xo = (}{ 3) are solutions of the associated system.
1 2

(1) y()
yi(t)  ya(t)
This motivates the following definition:

Moreover: W[xy,X2](t) =

Definition
The Wronskian W[y, y»] of the two solutions y4, y» is the function defined for t € / by

yi(t) Yz(f)'
i) ya(t)]

Wiy, ye](t) =




Theorem 4.2.6 applied to the system of DE’s associated with the 2nd order
homogenous linear differential equation

y"+p(t)y +q(t)y=0

yields the following theorem.

Theorem (Theorem 4.2.7)

Suppose that y; and y» are two solutions of y” + p(t)y’ + q(t)y = 0.
If the Wronskian W[y, y2] of y1 and y» is nonzero on the interval I, then y; and y» form
a fundamental set of solutions. The general solution is given by

y(t) = ciyi(t) + caya(t)

where ¢y, ¢, are arbitrary constants.

Two initial conditions y(t) = ¥o and y'(t) = y: determine the constants c1, ¢,
uniquely.




ZIORSAG)

Wiyl =10 ()]

Examples:
o Find the Wronskian of the functions x and xe*.
o If the Wronskian W of f and g is 3%, and if f(t) = &*, find the function g(t).
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How to compute the Wronskian in practice?

Theorem (Theorem 4.2.8, Corollary 4.2.9, Abel Theorem)

The Wronskian W of two solutions of the system x' = P(t)x is given by

W(t) = cexp [ (pri(®) + pee(t)

for some constant number ¢ depending on the solutions.
Here: p11(t) + poo(t) = traceP(t)
The Wronskian of two solutions of the equation y"' + p(t)y’ + q(t)y = 0 is given by

W(t) = cexp ( - /p(t)dt)

where c is a constant depending on the solutions.

In particular, the Wronskian is either never zero or always zero in the open interval |.

D 4 44 11/12



Method of reduction of order

Consider the equation y” + p(t)y’ + q(t)y = 0 of which we know one solution y;.
The method of reduction of order provides a second solution y» such that {y1, y»} is a
fundamental system.

o Suppose y; is a solution of this equation.

o Put y»(t) = v(t)y1(t) and find a condition on v so that y» is a solution of the
equation.

o Substituting y» in the DE equation, one gets:

nv' + @y +py)v =0
o Letting w = v/, we obtain a first-order DE

yw' + 2yl +py)w =0
o Solve and integrate to find v and then y».

Example: Consider the differential equation 2y” + 2ty’ — 2y = 0, for t > 0.
Check that y4(t) = t is a solution. Use the reduction of order to find a second solution
¥2 such that {y1, y»} is a fundamental set of solutions on (0, +0o0).



