
4.3: Linear homogeneous equations with constant coefficients
Consider a homogeneous second order linear differential equation

ay ′′ + by ′ + cy = 0

where a, b and c are given real numbers (with a 6= 0).

Letting x1 = y and x2 = y ′, this equation transforms into the system

x′ = Ax =

(
0 1
−c/a −b/a

)
x where x =

(
x1

x2

)
=

(
y
y ′

)
Definition
The characteristic equation (or auxiliary equation) of ay ′′ + by ′ + cy = 0 is

aλ2 + bλ+ c = 0 .

The characteristic polynomial of ay ′′ + by ′ + cy = 0 is aλ2 + bλ+ c.

The characteristic equation of ay ′′ + by ′ + cy = 0 is the characteristic equation of A.
Its solutions (also called roots) are the eigenvalues of A.

If λ is an eigenvalue of A then one can check that v =

(
1
λ

)
is an eigenvector of A for

the eigenvalue λ.
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Let λ be a root of the characteristic equation aλ2 + bλ+ c = 0. The following theorem
specifies how to associate solutions to λ.

Theorem (Theorem 4.3.1)

If λ is a root of characteristic equation, then the function y(t) = eλt is a solution
of the equation ay ′′ + by ′ + cy = 0.

If λ is a root of characteristic equation, then the vector function x(t) =
(

eλt

λeλt

)
is

a solution of x′ = Ax.

Remark:

• The solution of ay ′′ + by ′ + cy = 0 is the first component of the solution of
x′ = Ax.

• We may substitute y = eλt into ay ′′ + by ′ + cy = 0 and find directly that y = eλt

is a solution if and only if λ satisfies the characteristic equation.
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Theorem (Theorem 4.3.2)
Let λ1 and λ2 be the (possibly equal) roots of the characteristic equation

aλ2 + bλ+ c = 0 .

Then the general solution of the differential equation

ay ′′ + by ′ + cy = 0

is:

y(t) = c1eλ1t + c2eλ2t if λ1 6= λ2 are real,

y(t) = c1eλ1t + c2teλ1t if λ1 = λ2,

y(t) = c1eµt cos(νt) + c2eµt sin(νt) if λ2 = λ1 = µ+ iν.

In the above formulas, c1 and c2 are arbitrary constants.

Example:
Determine the general solution of y ′′ + 5y ′ + 6y = 0
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Theorem (Theorem 4.3.2, continued)
The general solution of the corresponding system of linear differential equations

x′ = Ax =

(
0 1
−c/a −b/a

)
x

is:

x(t) = c1eλ1t
(

1
λ1

)
+ c2eλ2t

(
1
λ2

)
if λ1 6= λ2 are real,

x(t) = c1eλ1t
(

1
λ1

)
+ c2eλ1t

(
t

1 + λ1t

)
if λ1 = λ2,

x(t) = c1eµt
(

cos(νt)
µ cos(νt)− ν sin(νt)

)
+ c2eµt

(
sin(νt)

µ sin(νt) + ν cos(νt)

)
if λ2 = λ1 = µ+ iν.

In the above formulas, c1 and c2 are arbitrary constants.

Example:
Determine the system of linear equations corresponding to y ′′ + 5y ′ + 6y = 0 and its
general solution.
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Phase portraits
Goal: to study the dynamical system x′ = Ax =

(
0 1
−c/a −b/a

)
x

associated with the homogeneous second order linear differential equation
ay ′′ + by ′ + cy = 0

The state variables are x1 = y and x2 = y ′ and x =

(
x1

x2

)
=

(
y
y ′

)
.

We apply the results of Sections 3.3, 3.4, 3.5 to dynamical systems with

A =

(
0 1
−c/a −b/a

)
Recall: the equilibrium solutions (or critical points) of x′ = Ax are the solutions of
Ax = 0 (i.e. the constant solutions x = constant).
Since det A = c/a, we obtain:

xeq = 0 =

(
0
0

)
is the unique equilibrium solution if and only if c 6= 0.

If c = 0, there is one line of equilibrium solutions xeq.

If xeq = 0 is unique, then its type (nodal source/nodal sink/saddle/spiral sink/spiral source/center/stable or

unstable proper node) and its stability (stable/unstable/asymptotically stable) are determined as in Tables
3.3.1, 3.4.1, 3.5.1.
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Example:
Consider the 2nd order homogenous linear differential equations:

y ′′ + y ′ − 6y = 0

.

From the roots of of the characteristic equation, determine the type each critical
point of the corresponding dynamical system.

Use the general solution to find a two-parameter family of trajectories of the
corresponing dynamical system.

Sketch the phase portrait, including straight line orbits, from this family of
trajectories.
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