Section 4.4: Vibrations. Harmonic oscillators

Main Topics:

- Mechanical vibrations (systems spring-mass)
- Harmonic oscillators
- Examples of second order differential equations.

Recall the equation describing the dynamics (or the vibrations) of a spring-mass system:

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y=F
$$

where

- the unknown function $y=y(t)$ describes the motion of the mass at time t,
- m is the mass,
- k the spring constant,
- γ the damping factor,
- $F=F(t)$ an external force applied on the system.
(m, k and γ are positive constants).
The initial conditions:

$$
y(0)=y_{0} \quad \text { and } \quad y^{\prime}(0)=v_{0}
$$

(specifying the initial position y_{0} and the initial velocity v_{0}) uniquely determine the motion.

- If $F=0$ we say that the system is unforced or free.
- Free spring-mass systems are known as harmonic oscillators.

Undamped free vibrations

This case corresponds to $\gamma=0$ and $F=0$.
The equation of the motion is

$$
m y^{\prime \prime}+k y=0
$$

Setting

$$
\omega_{0}^{2}=k / m
$$

this equation becomes

$$
y^{\prime \prime}+\omega_{0}^{2} y=0 .
$$

Characteristic equation: $\lambda^{2}+\omega_{0}^{2}=0$, with roots $\lambda= \pm i \omega_{0}$. The general solution is:

$$
y(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)
$$

for arbitrary constants A and B.

The phase-amplitude form of the general solution $y(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)$ is

$$
y(t)=R \cos \left(\omega_{0} t-\delta\right)
$$

with $\left\{\begin{array}{l}R=\sqrt{A^{2}+B^{2}} \\ A=R \cos \delta \\ B=R \sin \delta\end{array}\right.$

So that $\left\{\begin{array}{l}\cos \delta=\frac{A}{\sqrt{A^{2}+B^{2}}} \\ \sin \delta=\frac{B}{\sqrt{A^{2}+B^{2}}} .\end{array}\right.$

Simple harmonic motion $y=R \cos \left(\omega_{0} t-\delta\right)$.

The graph of $y(t)=R \cos \left(\omega_{0} t-\delta\right)$ is a displaced cosine function.
This is a periodic motion (or simple harmonic motion) of the mass:

- $T=\frac{2 \pi}{\omega_{0}}$ is the period,
- $\omega_{0}=\sqrt{k / m}$ is the natural frequency,
- δ is the phase,
- R is the amplitude.

Example: Determine ω_{0}, R and δ such that $y=-\cos t+\sqrt{3} \sin t$ can be written as $y=R \cos \left(\omega_{0} t-\delta\right)$.

Damped free vibrations

This case corresponds to $\gamma \neq 0$ and $F=0$.
The equation of the motion is

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y=0
$$

Characteristic equation: $m \lambda^{2}+\gamma \lambda+k=0$ with roots:

$$
\lambda_{1}, \lambda_{2}=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

The solutions of the equation of the motion are of three different types, depending on the sign of $\gamma^{2}-4 k m$.

$$
\lambda_{1}, \lambda_{2}=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

- Underdamped harmonic motion: $\gamma^{2}-4 \mathrm{~km}<0$

Complex conjugate roots $\lambda_{1}=\mu+i \nu, \lambda_{2}=\overline{\lambda_{1}}$.
General solution: $\quad y(t)=e^{-\gamma t / 2 m}(A \cos (\nu t)+B \sin (\nu t))$
with $\mu=-\gamma / 2 m<0$ and $\nu=\frac{\sqrt{4 k m-\gamma^{2}}}{2 m}>0$.

- Critically damped harmonic motion: $\gamma^{2}-4 \mathrm{~km}=0$

Repeated negative roots $\lambda_{1}=\lambda_{2}=-\gamma / 2 m<0$.
General solution: $\quad y(t)=(A+B t) e^{-\gamma t / 2 m}$

- Overdamped harmonic motion: $\gamma^{2}-4 k m>0$

Two distinct negative eigenvalues λ_{1}, λ_{2} (because $\sqrt{\gamma^{2}-4 \mathrm{~km}}<\gamma$).
General solution: $\quad y(t)=A e^{\lambda_{1} t}+B e^{\lambda_{2} t}$
Remark: In all cases $\lim _{t \rightarrow+\infty} y(t)=0$ (because of the damping, as t increases, the motion decreases and eventually stops)

A more detailed study of the underdamped harmonic motion: $\gamma^{2}-4 \mathrm{~km}<0$
General solution: $\quad y(t)=e^{-\gamma t / 2 m}(A \cos (\nu t)+B \sin (\nu t))$
with $-\gamma / 2 m<0$ and

$$
\nu=\frac{\sqrt{4 k m-\gamma^{2}}}{2 m}=\frac{\gamma}{2 m} \sqrt{1-\frac{4 k m}{\gamma^{2}}}>0
$$

As for the simple harmonic motion, set:

$$
\left\{\begin{array}{l}
R=\sqrt{A^{2}+B^{2}} \\
A=R \cos \delta \\
B=R \sin \delta
\end{array}\right.
$$

Damped vibration; $y=R e^{-\gamma t / 2 m} \cos (v t-\delta)$.
Figure 4.4.5 in J.Brannan \& W. Joyce
and write: $\quad y(t)=R e^{-\gamma t / 2 m} \cos (\nu t-\delta)$

- the motion oscillates between the curves $y=\operatorname{Re}^{-\gamma t / 2 m}$ (damped oscillation),
- ν is the quasi-frequency,
- $T_{d}=\frac{2 \pi}{\nu}$ is the quasi-period.
- As $\gamma \rightarrow 2 \sqrt{k m}$ we have $\nu \rightarrow 0$ and $T_{d} \rightarrow \infty$ and there is no oscillation (critically damped motion). The value $\gamma=2 \sqrt{\mathrm{~km}}$ is called the critical damping.

Phase portraits for harmonic oscillators

Phase portraits are obtained from corresponding systems of first order differential equations:

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}=\left(\begin{array}{cc}
0 & 1 \\
-k / m & -\gamma / m
\end{array}\right) \mathbf{x}
$$

The origin is the unique equilibrium point because A is invertible (as $\operatorname{det}(A)=k / m \neq 0$).
The roots of the characteristic equation $m \lambda^{2}+\gamma \lambda+k=0$ are the eigenvalues of \mathbf{A}.
They give the nature of the equilibrium point of the different harmonic oscillators:

- a stable center for the undamped harmonic oscillator,
- a spiral sink for the underdamped harmonic oscillator,
- a nodal sink for both the overdamped and the critically damped harmonic oscillators.

Example:

A mass of weight 32 pounds is attached at the bottom end of a spring of natural lenght 6 ft . At the equilibrium, the spring measures 9.2 ft . The mass is initially released from rest at a point of 2 feet above the equilibrium position. Assume that the surrounding medium offers a resistance which is twice the instantaneous velocity.

- Write an initial value problem describing for the displacement $y=y(t)$ of the mass as a function of the time t.
- Solve the initial value problem and determine $y(t)$.
- Classify the type of harmonic oscillator. What are the parameters characterizing this motion?
- Describe the motion of the mass for very large values of t. Sketch the function $y(t)$.
- Draw a phase portrait of the equivalent dynamical system. Give the type of equilibrium point.
- Describe the trajectory of the given initial value problem.

