
Section 4.4: Vibrations. Harmonic oscillators

Main Topics:

Mechanical vibrations (systems spring-mass)

Harmonic oscillators

Examples of second order differential equations.
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Recall the equation describing the dynamics (or the vibrations) of a spring-mass
system:

my ′′ + γy ′ + ky = F

where

the unknown function y = y(t) describes the motion of the mass at time t ,

m is the mass,

k the spring constant,

γ the damping factor,

F = F (t) an external force applied on the system.

(m, k and γ are positive constants).

The initial conditions:
y(0) = y0 and y ′(0) = v0

(specifying the initial position y0 and the initial velocity v0)

uniquely determine the motion.

If F = 0 we say that the system is unforced or free.

Free spring-mass systems are known as harmonic oscillators.
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Undamped free vibrations

This case corresponds to γ = 0 and F = 0.

The equation of the motion is
my ′′ + ky = 0

Setting
ω2

0 = k/m

this equation becomes
y ′′ + ω2

0y = 0 .

Characteristic equation: λ2 + ω2
0 = 0, with roots λ = ±iω0.

The general solution is:

y(t) = A cos(ω0t) + B sin(ω0t)

for arbitrary constants A and B.
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The phase-amplitude form of the general solution y(t) = A cos(ω0t) + B sin(ω0t) is

y(t) = R cos(ω0t − δ)

with


R =

√
A2 + B2

A = R cos δ
B = R sin δ

so that

cos δ = A√
A2+B2

sin δ = B√
A2+B2

.

The graph of y(t) = R cos(ω0t − δ) is a displaced cosine function.
This is a periodic motion (or simple harmonic motion) of the mass:

T = 2π
ω0

is the period,

ω0 =
√

k/m is the natural frequency,

δ is the phase,

R is the amplitude.

Example: Determine ω0, R and δ such that y = − cos t +
√

3 sin t can be written
as y = R cos(ω0t − δ).
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Damped free vibrations

This case corresponds to γ 6= 0 and F = 0.

The equation of the motion is

my ′′ + γy ′ + ky = 0

Characteristic equation: mλ2 + γλ+ k = 0 with roots:

λ1, λ2 =
−γ ±

√
γ2 − 4km

2m
=

γ

2m

(
− 1±

√
1− 4km

γ2

)

The solutions of the equation of the motion are of three different types, depending on
the sign of γ2 − 4km.
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λ1, λ2 =
−γ ±

√
γ2 − 4km

2m
=

γ

2m

(
− 1 ±

√
1 −

4km
γ2

)

Underdamped harmonic motion: γ2 − 4km < 0
Complex conjugate roots λ1 = µ+ iν, λ2 = λ1.

General solution: y(t) = e−γt/2m(A cos(νt) + B sin(νt))

with µ = −γ/2m < 0 and ν =

√
4km − γ2

2m
> 0.

Critically damped harmonic motion: γ2 − 4km = 0
Repeated negative roots λ1 = λ2 = −γ/2m < 0.

General solution: y(t) = (A + Bt)e−γt/2m

Overdamped harmonic motion: γ2 − 4km > 0
Two distinct negative eigenvalues λ1, λ2 (because

√
γ2 − 4km < γ).

General solution: y(t) = Aeλ1t + Beλ2t

Remark: In all cases limt→+∞ y(t) = 0
(because of the damping, as t increases, the motion decreases and eventually stops)
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A more detailed study of the underdamped harmonic motion: γ2 − 4km < 0

General solution: y(t) = e−γt/2m(A cos(νt) + B sin(νt))

with −γ/2m < 0 and

ν =

√
4km − γ2

2m
=

γ

2m

√
1− 4km

γ2 > 0

As for the simple harmonic motion, set:
R =

√
A2 + B2

A = R cos δ
B = R sin δ

and write: y(t) = Re−γt/2m cos(νt − δ)

the motion oscillates between the curves y = Re−γt/2m (damped oscillation),

ν is the quasi-frequency,

Td = 2π
ν

is the quasi-period.

As γ → 2
√

km we have ν → 0 and Td →∞ and there is no oscillation (critically
damped motion). The value γ = 2

√
km is called the critical damping.
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Phase portraits for harmonic oscillators

Phase portraits are obtained from corresponding systems of first order differential
equations:

x′ = Ax =

(
0 1

−k/m −γ/m

)
x

The origin is the unique equilibrium point because A is invertible
(as det(A) = k/m 6= 0).

The roots of the characteristic equation mλ2 + γλ+ k = 0 are the eigenvalues of A.

They give the nature of the equilibrium point of the different harmonic oscillators:

a stable center for the undamped harmonic oscillator,

a spiral sink for the underdamped harmonic oscillator,

a nodal sink for both the overdamped and the critically damped harmonic
oscillators.
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Example:
A mass of weight 32 pounds is attached at the bottom end of a spring of natural lenght
6 ft. At the equilibrium, the spring measures 9.2 ft. The mass is initially released from
rest at a point of 2 feet above the equilibrium position. Assume that the surrounding
medium offers a resistance which is twice the instantaneous velocity.

Write an initial value problem describing for the displacement y = y(t) of the
mass as a function of the time t .

Solve the initial value problem and determine y(t).

Classify the type of harmonic oscillator. What are the parameters characterizing
this motion?

Describe the motion of the mass for very large values of t . Sketch the function
y(t).

Draw a phase portrait of the equivalent dynamical system. Give the type of
equilibrium point.

Describe the trajectory of the given initial value problem.
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