How to guess the form of $Y(t)$ :

- If $g(t)=e^{\alpha t}$, then choose $Y(t)=A t^{s} e^{\alpha t}$,
- If $g(t)=\sin (\beta t)$ or $\cos (\beta t)$, then choose $Y(t)=t^{s}(A \sin (\beta t)+B \cos (\beta t))$,
- If $g(t)=R(t)$ is a polynomial of degree $n$, then choose $Y(t)=t^{s} S(t)$ a polynomial of degree $n$.
- If $g(t)$ is a product of any two or all three of the above functions, then choose $Y$ to be the corresponding product as above.
- The parameter $s$ can be $0,1,2$. It is the smallest $s$ among $0,1,2$ so that the guess for $Y(t)$ is not a solution of the corresponding homogeneous DE.
- If $g(t)=g_{1}(t)+\cdots+g_{r}(t)$, then determine a particular solution $Y_{j}(t)$ for each differential equation $a y^{\prime \prime}+b y^{\prime}+c=g_{j}(t)$ for $j=1, \ldots, r$. Set $Y=Y_{1}+\cdots+Y_{r}$.


## Superposition principle for nonhomogenous DE

The last step for guessing the form of the particular solution was:
If $g(t)=g_{1}(t)+\cdots+g_{r}(t)$, then determine a particular solution $Y_{j}(t)$ for each differential equation $a y^{\prime \prime}+$ by $^{\prime}+c=g_{j}(t)$ for $j=1, \ldots, r$. Set $Y=Y_{1}+\cdots+Y_{r}$.
It is a special instance (for constant coefficient linear DE) of the following general principle.

## Theorem (Principle of superposition)

Consider the linear differential equation $L[y]=g(t)$.
Suppose that the function $g(t)$ splits into two functions $g(t)=g_{1}(t)+g_{2}(t)$.
If $Y_{1}$ is a solution of $L[y]=g_{1}(t)$ and $Y_{2}$ a solution of $L[y]=g_{2}(t)$ then $Y_{1}+Y_{2}$ is a solution of $L[y]=g(t)$.

## Example:

Write the form the general solution of

$$
y^{\prime \prime}-3 y^{\prime}-4 y=e^{-t}-4 t^{2}
$$

