4.4: Nonhomogenous equations. Method of undetermined

 coefficients
Main Topics:

Second order nonhomogeneous linear differential equations

$$
y^{\prime \prime}+q(t) y^{\prime}+p(t) y=g(t)
$$

Nonhomogeneous: $g(t) \neq 0$.

- Form of the general solution
- Method of undetermined coefficients to find a particular solution

Recall the linear operator $L=D^{2}+p D+q=\frac{d^{2}}{d t^{2}}+p \frac{d}{d t}+q$ So $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t)$.
The linear differential equation $\quad y^{\prime \prime}+q(t) y^{\prime}+p(t) y=g(t)$ can be written in terms of L as $\quad L[y]=g(t)$.

Definition

The homogeneous linear equation (with same p and q and $g=0$)

$$
y^{\prime \prime}+q(t) y^{\prime}+p(t) y=0 \quad \text { i.e. } \quad L[y]=0
$$

is called the homogeneous equation corresponding to $L[y]=g(t)$.
Suppose Y_{1} and Y_{2} are solutions of $L[y]=g(t)$, i.e.

$$
L\left[Y_{1}\right]=g(t) \quad \text { and } \quad L\left[Y_{2}\right]=g(t)
$$

Then $\quad L\left[Y_{1}-Y_{2}\right]=L\left[Y_{1}\right]-L\left[Y_{2}\right]=g(t)-g(t)=0$, that is
$Y_{1}-Y_{2}$ is a solution of the corresponding homogeneous equation $L[y]=0$.

Theorem (Theorem 4.5.1)

Suppose

- Y_{1} and Y_{2} are solutions of $L[y]=g(t)$
- y_{1} and y_{2} form a fundamental set of solutions of $L[y]=0$.

Then: $\quad Y_{1}-Y_{2}=c_{1} y_{1}+c_{2} y_{2} \quad$ for some constants c_{1}, c_{2}.

Theorem (Theorem 4.5.2)

The general solution of the nonhomogeneous linear differential equation $L[y]=g(t)$ is of the form

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)
$$

where

- c_{1}, c_{2} are arbitrary constants,
- Y is a particular solution of $L[y]=g(t)$.

In other words:

Theorem (Theorem 4.5.2, restated)

The general solution of the nonhomogeneous linear differential equation $L[y]=g(t)$ is of the form

$$
y(t)=y_{c}(t)+Y(t)
$$

where

- y_{c} is the general solution of the corresponding homogenous differential equation $L[y]=0 \quad\left(y_{c}\right.$ is often called the complementary solution)
- Y is a particular solution of $L[y]=g(t)$.

General strategy to solve the nonhomogeneous linear differential equation $L[y]=g(t)$:

- find the general solution y_{c} of the corresponding homogenous equation $L[y]=0$
- find one particular solution Y of the nonhomogenous equation $L[y]=g$
- add them together.

We know how to determine y_{c} when $L[y]=0$ has constant coefficients (Section 4.3) (In general, i.e. if $p(t)$ and $q(t)$ are not constant functions, finding y_{c} is a more difficult issue)

We now look at how to find a particular solution Y of $L[y]=g$. Two methods:

- Method of undetermined coefficients (here, in Section 4.5. It applies to DE with constant coefficients)
- Method of variation of parameters (Section 4.7)

Method of undetermined coefficients

Apply this method to a constant coefficient differential equation of the form

$$
a y^{\prime \prime}+b y^{\prime}+c=g(t)
$$

where b, c are constants and $g(t)$ is of a specific form given below.

Method:

- find the general solution y_{c} of the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c=0$
- make a guess on the form of the expected particular function Y.

The choice of Y depends on:
\diamond the form of $g(t)$
\diamond the form of the two fundamental solutions of $a y^{\prime \prime}+b y^{\prime}+c=0$.
The guess for Y will depend on a finite number of parameters A, B, \ldots.

- Substitute the guess for Y in the differential equation $a y^{\prime \prime}+b y^{\prime}+c=g(t)$ and determine the parameters.
Example: If $g(t)=e^{\alpha t}$, choose $Y(t)=A t^{s} e^{\alpha t}$.
Apply this "guess" to solve the following differentials equations:
- $y^{\prime \prime}-3 y^{\prime}-4 y=4 e^{3 t}$
- $y^{\prime \prime}-3 y^{\prime}-4 y=e^{-t}$

