4.4: Nonhomogenous equations. Method of undetermined coefficients

Main Topics:

Second order nonhomogeneous linear differential equations

$$y'' + q(t)y' + p(t)y = g(t)$$

Nonhomogeneous: $g(t) \neq 0$.

- Form of the general solution
- Method of undetermined coefficients to find a particular solution

(4 回) (4 回) (4 回)

Recall the linear operator $L = D^2 + pD + q = \frac{d^2}{dt^2} + p\frac{d}{dt} + q$ So L[y] = y'' + p(t)y' + q(t).

The linear differential equation y'' can be written in terms of *L* as L[y]

$$y'' + q(t)y' + p(t)y = g(t)$$

 $L[y] = g(t)$.

Definition

The homogeneous linear equation (with same p and q and g = 0)

$$y'' + q(t)y' + p(t)y = 0$$
 i.e. $L[y] = 0$,

is called the **homogeneous equation corresponding to** L[y] = g(t).

Suppose Y_1 and Y_2 are solutions of L[y] = g(t), i.e.

$$L[Y_1] = g(t)$$
 and $L[Y_2] = g(t)$

Then $L[Y_1 - Y_2] = L[Y_1] - L[Y_2] = g(t) - g(t) = 0$, that is $Y_1 - Y_2$ is a solution of the corresponding homogeneous equation L[y] = 0.

Theorem (Theorem 4.5.1)

Suppose

- Y_1 and Y_2 are solutions of L[y] = g(t)
- y_1 and y_2 form a fundamental set of solutions of L[y] = 0.

Then: $Y_1 - Y_2 = c_1 y_1 + c_2 y_2$ for some constants c_1 , c_2 .

Theorem (Theorem 4.5.2)

The general solution of the nonhomogeneous linear differential equation L[y] = g(t) is of the form

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$

where

- c₁, c₂ are arbitrary constants,
- Y is a particular solution of L[y] = g(t).

In other words:

Theorem (Theorem 4.5.2, restated)

The general solution of the nonhomogeneous linear differential equation L[y] = g(t) is of the form

$$y(t) = y_c(t) + Y(t)$$

where

- y_c is the general solution of the corresponding homogenous differential equation L[y] = 0 (y_c is often called the **complementary solution**)
- Y is a particular solution of L[y] = g(t).

General strategy to solve the nonhomogeneous linear differential equation L[y] = g(t):

- find the general solution y_c of the corresponding homogenous equation L[y] = 0
- find **one** particular solution Y of the nonhomogenous equation L[y] = g
- add them together.

We know how to determine y_c when L[y] = 0 has constant coefficients (Section 4.3) (In general, i.e. if p(t) and q(t) are not constant functions, finding y_c is a more difficult issue)

We now look at how to find a particular solution Y of L[y] = g. Two methods:

- Method of undetermined coefficients (here, in Section 4.5. It applies to DE with constant coefficients)
- Method of variation of parameters (Section 4.7)

Method of undetermined coefficients

Apply this method to a **constant coefficient** differential equation of the form

$$ay^{\prime\prime}+by^{\prime}+c=g(t)$$

where b, c are constants and g(t) is of a specific form given below. **Method:**

- find the general solution y_c of the homogeneous equation ay'' + by' + c = 0
- make **a guess** on the form of the expected particular function *Y*. The choice of *Y* depends on:
 - \diamond the form of g(t)
 - ♦ the form of the two fundamental solutions of ay'' + by' + c = 0.

The guess for Y will depend on a finite number of parameters A, B,

 Substitute the guess for Y in the differential equation ay" + by' + c = g(t) and determine the parameters.

Example: If $g(t) = e^{\alpha t}$, choose $Y(t) = At^s e^{\alpha t}$. Apply this "guess" to solve the following differentials equations:

•
$$y'' - 3y' - 4y = 4e^{3t}$$

•
$$y'' - 3y' - 4y = e^{-t}$$