
Section 4.6: Forced vibrations, frequency response,
and resonance

Main Topics:

Forced vibrations with damping

Forced vibrations without damping

Frequency and resonance.
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Recall the equation describing the dynamics (or the vibrations) of a spring-mass
system:

my ′′ + γy ′ + ky = F

where

the unknown function y = y(t) describes the motion of the mass at time t ,

m is the mass,

k the spring constant,

γ the damping factor,

F = F (t) an external force applied on the system.

(m, k and γ are positive constants).

Dividing all terms by m we get:

y ′′ + 2δy ′ + ω2
0y = f

where

ω0 =
√

k/m is the natural frequency,

δ = γ
2m is the phase,

f (t) = F (t)
m .
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Suppose that the external force is periodic, that is that:

f (t) = A cos(ωt) or f (t) = A sin(ωt)

(or a linear combination of both).

For an input force equal to A cos(ωt) (or equal to A sin(ωt))

A is the amplitude of the input force

ω is the frequency.

It is convenient to consider both terms simultaneously via complex exponentials:

f (t) = A cos(ωt) + iA sin(ωt) = Aeiωt

Remark: the magnitude of force must be a real function.
Complex numbers are a tool to deal with both sin and cos terms at once.

The results for f (t) = A cos(ωt) will be obtained from those for f (t) = Aeiωt by taking
real parts; those for f (t) = A sin(ωt) by taking imaginary parts.

3 / 13



Forced vibrations with damping (γ = 2mδ 6= 0)
The general solution of the differential equation

y ′′ + 2δy ′ + ω2
0y = Aeiωt

is of the form y(t) = yc(t) + Y (t) where

yc is the general solution of y ′′ + 2δy ′ + ω2
0y = 0,

Y (t) is a particular solution of the nonhomogenous equation.

yc is computed as for the damped free vibrations (Section 4.4).

A fundamental system of solutions y1, y2 is obtained from the roots λ1, λ1 of the
characteristic equation

λ2 + 2δλ+ ω2
0 = 0.

The nature of a fundamental system of solutions y1, y2 depends on the sign of the
discriminant δ2 − ω2

0 .

Remark: Since ω0 =
√

k/m and δ = γ/2m, we have

δ2 − ω2
0 =

γ2

4m2
−

k
m

=
1

m2

(
γ2 − 4km

)
Hence:
the signs (> 0, = 0, < 0) of δ2 − ω2

0 (here) and γ2 − 4km (section 4.4) are the same
(as they should: we just divided the initial equation by m).
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A particular solution Y (t) of the differential equation y ′′ + 2δy ′ + ω2
0y = Aeiωt

can be determined by the method of undetermined constants:

Y (t) = Ceiωt with C constant determined by substitution into the DE.(
(iω)2 + 2δ(iω) + ω2

0

)
Ceiωt = Aeiωt

i.e.
C =

A
(iω)2 + 2δ(iω) + ω2

0

Therefore a particular (complex) solution of the differential equation is

Y (t) =
A

(iω)2 + 2δ(iω) + ω2
0

eiωt

Remark: Above we considered f (t) = Aeiωt .
If f (t) = A cos(ωt), then a particular solution is YRe(t) = Re Y (t):

YRe(t) = A
(ω2

0 − ω2) cos(ωt) + 2δω sin(ωt)
(ω2

0 − ω2)2 + 4δ2ω2

This solution is a steady oscillation with the same frequency ω as the external force.

The function YRe is referred to as the steady-state solution or steady-state
response or forced response.
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Suppose f (t) = A cos(ωt):
The general solution solution of the differential equation y ′′ + 2δy ′ + ω2

0y = f (t) is

y(t) = yc(t) + YRe(t)

The explicit form of yc (already determined in Section 4.4) depends on the nature of
the roots of the characteristic equation λ2 + 2δλ+ ω2

0 = 0.

The possible cases can be rewritten in terms of δ (phase) and ω0 (natural frequency),
as follows.

The roots of the characteristic equation are:

−δ ±
√
δ2 − ω2

0 if δ2 − ω2
0 > 0

−δ (repeated) if δ2 − ω2
0 = 0

−δ ± i
√
ω2

0 − δ2 if δ2 − ω2
0 < 0

As noticed in Section 4.4: lim
t→+∞

yc(t) = 0.

In all three cases, yc = e−δt × (function of t) and one can check that lim
t→+∞

yc(t) = 0.

The function yc is referred to as the transient solution.

However, the solution y(t) = yc(t) + YRe(t) generally does not die out as t increases.
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Example:
A mass m of 0.2 kg is attached to a spring of spring constant k = 2 N/m. The mass is
initially released from rest at 0.5 m below the equilibrium point. An external periodic
force F (t) = 5 cos(4t) with period T = π/2 sec is applied to the mass. Moreover, the
medium offers a resistance corresponding to a damping constant of value
γ = 1.2Nsec/m.

Write the IVP modeling the displacement y of the mass as a function of time.

What are the phase δ and the natural frequence ω0?

Determine a (complex-value) particular solution Y (t) and the corresponding
steady-state solution YRe(t).

Determine y(t).
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Frequency response
The frequency response of the system with forcing function f (t) = A cos(ωt)
[ or f (t) = A sin(ωt)] is the ratio

G(iω) =
Y (t)
Aeiωt =

1
(iω)2 + 2δ(iω) + ω2

0

It does not depend on the time.

In the trigonometric form: G(iω) =| G(iω) | e−iφ(ω)

where:
the modulus of G(iω) is the gain of the frequency response:

| G(iω) |= 1√
(ω2

0 − ω2)2 + 4δ2ω2

the argument of G(iω) is the following angle, called the phase of the frequency
response

φ(ω) = arccos
( ω2

0 − ω2√
(ω2

0 − ω2)2 + 4δ2ω2

)
The (complex) particular solution can be written as

Y (t) = AeiωtG(iω) = A | G(iω) | ei(ωt−φ(ω))
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The particular solution for the harmonic input f (t) = A cos(ωt) can be written:

YRe(t) = A | G(iω) | cos(ωt − φ(ω))

The amplitude of the output YRe(t) is A | G(iω) |
The phase of the output YRe(t) has a phase shift of magnitude φ(ω)
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How do the gain and the phase of the frequency response depend on the
frequency ω of the harmonic input?

The explicit expressions are complicated:

| G(iω) |= 1√
(ω2

0 − ω2)2 + 4δ2ω2

φ(ω) = arccos
( ω2

0 − ω2√
(ω2

0 − ω2)2 + 4δ2ω2

)
.

For low frequency inputs: limω→0+ |G(iω)| = 1/ω2
0 = m/k

For very high frequency inputs: limω→+∞ |G(iω)| = 0

Maximal gain at ω = ωmax for which d
dω |G(iω)| = 0:

ω2
max = ω2

0 − 2δ = ω2
0(1−

γ2

2mk
)

|G(iωmax)| =
m

γω0
√

1− (γ2/4mk)

Remark: 0 < ωmax < ω0 and ωmax ≈ ω0 if the damping γ ≈ 0.
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Resonances

For γ ≈ 0+ the gain is very large and tends to +∞:

|G(iωmax)| =
m

γω0
√

1− (γ2/4mk)
≈ m
γω0

The maximal amplitude of the output equals the product A | G(iωmax) |.
When the steady-state response oscillates with a much greater amplitude than
the input, the system is said to be in resonance.

The frequency at which the maximal amplitude of the steady-state response
occur is called the resonant frequency of the system.

Resonance must be taken into account:

• when designing a system which vibrates or oscillates, it is important to keep
track of its resonance properties. Miscalculations can lead to catastrophs!

• to build instruments as seismographs (intended to detect peaks of signals)
use resonance properties.
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Example: [Example 1 in Section 4.6, p. 263]
Consider the IVP

y ′′ + 0.25y ′ + 2y = 2 cos(ωt)

with y(0) = 2, y ′(0) = 0.
One can compute that the IVP has the following complex-value particular solution

Y (t) =
3

(iω)2 + iω/8 + 1
eiωt

Determine the steady-state part of the solution.

Find the gain function | G(iω) | of the system.

Find the maximum value of | G(iω) | and the frequency ω for which it occurs.
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Forced vibrations without damping
In this case γ = 0 and δ = 0. The differential equation for an undamped forced
oscillator is

y ′′ + ω2
0y = f (t)

We suppose as before that f (t) = A cos(ωt).
The general solution is y = yc + Yp where:

y(t) = c1 cos(ω0t) + c2 sin(ω0t), with c1, c2 arbitrary constants, is the general
solution of the homogenous equation y ′′ + ω2

0y = 0
[characteristic equation: λ2 + ω2

0 = 0; roots λ = ±iω0].

Yp is a particular solution of the given DE.

The particular solution Yp is computed with the method of undetermined constants.
Its form depends on ω and ω0.

If ω 6= ω0 then eiωt is not a solution of homogeneous equation.
We substitute Y (t) = Ceiωt in the DE to determine C. Then Yp(t) = Re Y (t).

Computation gives Yp(t) =
A

(ω2
0 − ω2)

cos(ωt).

If ω = ω0 then eiω0t is a solution of homogeneous equation but teiω0t is not.
We substitute Y (t) = Cteiω0t in the DE to determine C. Then Yp(t) = Re Y (t).

Computation gives Yp(t) =
A

2ω0
t sin(ω0t).
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