Section 4.6: Forced vibrations, frequency response, and resonance

Main Topics:

- Forced vibrations with damping
- Forced vibrations without damping
- Frequency and resonance.

Recall the equation describing the dynamics (or the vibrations) of a spring-mass system:

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y=F
$$

where

- the unknown function $y=y(t)$ describes the motion of the mass at time t,
- m is the mass,
- k the spring constant,
- γ the damping factor,
- $F=F(t)$ an external force applied on the system.
(m, k and γ are positive constants).
Dividing all terms by m we get:

$$
y^{\prime \prime}+2 \delta y^{\prime}+\omega_{0}^{2} y=f
$$

where

- $\omega_{0}=\sqrt{k / m}$ is the natural frequency,
- $\delta=\frac{\gamma}{2 m}$ is the phase,
- $f(t)=\frac{F(t)}{m}$.

Suppose that the external force is periodic, that is that:

$$
f(t)=A \cos (\omega t) \quad \text { or } \quad f(t)=A \sin (\omega t)
$$

(or a linear combination of both).
For an input force equal to $A \cos (\omega t)$ (or equal to $A \sin (\omega t)$)

- A is the amplitude of the input force
- ω is the frequency.

It is convenient to consider both terms simultaneously via complex exponentials:

$$
f(t)=A \cos (\omega t)+i A \sin (\omega t)=A e^{i \omega t}
$$

Remark: the magnitude of force must be a real function.
Complex numbers are a tool to deal with both sin and cos terms at once.
The results for $f(t)=A \cos (\omega t)$ will be obtained from those for $f(t)=A e^{i \omega t}$ by taking real parts; those for $f(t)=A \sin (\omega t)$ by taking imaginary parts.

Forced vibrations with damping $(\gamma=2 m \delta \neq 0)$

The general solution of the differential equation

$$
y^{\prime \prime}+2 \delta y^{\prime}+\omega_{0}^{2} y=A e^{i \omega t}
$$

is of the form $\quad y(t)=y_{c}(t)+Y(t) \quad$ where

- y_{c} is the general solution of $y^{\prime \prime}+2 \delta y^{\prime}+\omega_{0}^{2} y=0$,
- $Y(t)$ is a particular solution of the nonhomogenous equation.
- y_{c} is computed as for the damped free vibrations (Section 4.4).

A fundamental system of solutions y_{1}, y_{2} is obtained from the roots λ_{1}, λ_{1} of the characteristic equation

$$
\lambda^{2}+2 \delta \lambda+\omega_{0}^{2}=0 .
$$

The nature of a fundamental system of solutions y_{1}, y_{2} depends on the sign of the discriminant $\delta^{2}-\omega_{0}^{2}$.
Remark: Since $\omega_{0}=\sqrt{k / m}$ and $\delta=\gamma / 2 m$, we have

Hence:

$$
\delta^{2}-\omega_{0}^{2}=\frac{\gamma^{2}}{4 m^{2}}-\frac{k}{m}=\frac{1}{m^{2}}\left(\gamma^{2}-4 k m\right)
$$

the signs ($>0,=0,<0$) of $\delta^{2}-\omega_{0}^{2}$ (here) and $\gamma^{2}-4 k m$ (section 4.4) are the same (as they should: we just divided the initial equation by m).

- A particular solution $Y(t)$ of the differential equation $y^{\prime \prime}+2 \delta y^{\prime}+\omega_{0}^{2} y=A e^{i \omega t}$ can be determined by the method of undetermined constants:
$Y(t)=C e^{i \omega t}$ with C constant determined by substitution into the DE.

$$
\left((i \omega)^{2}+2 \delta(i \omega)+\omega_{0}^{2}\right) C e^{i \omega t}=A e^{i \omega t}
$$

i.e.

$$
C=\frac{A}{(i \omega)^{2}+2 \delta(i \omega)+\omega_{0}^{2}}
$$

Therefore a particular (complex) solution of the differential equation is

$$
Y(t)=\frac{A}{(i \omega)^{2}+2 \delta(i \omega)+\omega_{0}^{2}} e^{i \omega t}
$$

Remark: Above we considered $f(t)=A e^{i \omega t}$.
If $f(t)=A \cos (\omega t)$, then a particular solution is $Y_{\mathrm{Re}}(t)=\operatorname{Re} Y(t)$:

$$
Y_{\mathrm{Re}}(t)=A \frac{\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+2 \delta \omega \sin (\omega t)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}}
$$

This solution is a steady oscillation with the same frequency ω as the external force.

- The function $Y_{\text {Re }}$ is referred to as the steady-state solution or steady-state response or forced response.

Suppose $f(t)=A \cos (\omega t)$:
The general solution solution of the differential equation $y^{\prime \prime}+2 \delta y^{\prime}+\omega_{0}^{2} y=f(t)$ is

$$
y(t)=y_{c}(t)+Y_{\mathrm{Re}}(t)
$$

The explicit form of y_{c} (already determined in Section 4.4) depends on the nature of the roots of the characteristic equation $\lambda^{2}+2 \delta \lambda+\omega_{0}^{2}=0$.
The possible cases can be rewritten in terms of δ (phase) and ω_{0} (natural frequency), as follows.
The roots of the characteristic equation are:

- $-\delta \pm \sqrt{\delta^{2}-\omega_{0}^{2}}$ if $\delta^{2}-\omega_{0}^{2}>0$
- $-\delta$ (repeated) if $\delta^{2}-\omega_{0}^{2}=0$
- $-\delta \pm i \sqrt{\omega_{0}^{2}-\delta^{2}}$ if $\delta^{2}-\omega_{0}^{2}<0$

As noticed in Section 4.4: $\lim _{t \rightarrow+\infty} y_{c}(t)=0$.
In all three cases, $y_{c}=e^{-\delta t} \times($ function of $t)$ and one can check that $\lim _{t \rightarrow+\infty} y_{c}(t)=0$.

- The function y_{c} is referred to as the transient solution.

However, the solution $y(t)=y_{c}(t)+Y_{\operatorname{Re}}(t)$ generally does not die out as t increases.

Example:

A mass m of 0.2 kg is attached to a spring of spring constant $k=2 \mathrm{~N} / \mathrm{m}$. The mass is initially released from rest at 0.5 m below the equilibrium point. An external periodic force $F(t)=5 \cos (4 t)$ with period $T=\pi / 2 \mathrm{sec}$ is applied to the mass. Moreover, the medium offers a resistance corresponding to a damping constant of value $\gamma=1.2 \mathrm{Nsec} / \mathrm{m}$.

- Write the IVP modeling the displacement y of the mass as a function of time.
- What are the phase δ and the natural frequence ω_{0} ?
- Determine a (complex-value) particular solution $Y(t)$ and the corresponding steady-state solution $Y_{\operatorname{Re}}(t)$.
- Determine $y(t)$.

Frequency response

The frequency response of the system with forcing function $f(t)=A \cos (\omega t)$ [or $f(t)=A \sin (\omega t)$] is the ratio

$$
G(i \omega)=\frac{Y(t)}{A e^{i \omega t}}=\frac{1}{(i \omega)^{2}+2 \delta(i \omega)+\omega_{0}^{2}}
$$

It does not depend on the time.
In the trigonometric form: $\quad G(i \omega)=|G(i \omega)| e^{-i \phi(\omega)}$ where:

- the modulus of $G(i \omega)$ is the gain of the frequency response:

$$
|G(i \omega)|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}}}
$$

- the argument of $G(i \omega)$ is the following angle, called the phase of the frequency response

$$
\phi(\omega)=\arccos \left(\frac{\omega_{0}^{2}-\omega^{2}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}}}\right)
$$

The (complex) particular solution can be written as

$$
Y(t)=A e^{i \omega t} G(i \omega)=A|G(i \omega)| e^{i(\omega t-\phi(\omega))}
$$

The particular solution for the harmonic input $f(t)=A \cos (\omega t)$ can be written:

$$
Y_{\mathrm{Re}}(t)=A|G(i \omega)| \cos (\omega t-\phi(\omega))
$$

FIGURE 4.6.5 The steady-state response $Y_{\mathrm{Re}}=|G(i \omega)| A \cos (\omega t-\phi(\omega))$ of a spring-mass system due to the harmonic input $f(t)=A \cos \omega t$.

The amplitude of the output $Y_{\mathrm{Re}}(t)$ is $A|G(i \omega)|$
The phase of the output $Y_{\text {Re }}(t)$ has a phase shift of magnitude $\phi(\omega)$

How do the gain and the phase of the frequency response depend on the frequency ω of the harmonic input?

The explicit expressions are complicated:

$$
\begin{aligned}
& |G(i \omega)|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}}} \\
& \phi(\omega)=\arccos \left(\frac{\omega_{0}^{2}-\omega^{2}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}}}\right) .
\end{aligned}
$$

- For low frequency inputs: $\quad \lim _{\omega \rightarrow 0^{+}}|G(i \omega)|=1 / \omega_{0}^{2}=m / k$
- For very high frequency inputs: $\quad \lim _{\omega \rightarrow+\infty}|G(i \omega)|=0$
- Maximal gain at $\omega=\omega_{\text {max }}$ for which $\frac{d}{d \omega}|G(i \omega)|=0$:

$$
\begin{aligned}
& \omega_{\max }^{2}=\omega_{0}^{2}-2 \delta=\omega_{0}^{2}\left(1-\frac{\gamma^{2}}{2 m k}\right) \\
& \left|G\left(i \omega_{\max }\right)\right|=\frac{m}{\gamma \omega_{0} \sqrt{1-\left(\gamma^{2} / 4 m k\right)}}
\end{aligned}
$$

Remark: $0<\omega_{\max }<\omega_{0}$ and $\omega_{\max } \approx \omega_{0}$ if the damping $\gamma \approx 0$.

Resonances

- For $\gamma \approx 0+$ the gain is very large and tends to $+\infty$:

$$
\left|G\left(i \omega_{\max }\right)\right|=\frac{m}{\gamma \omega_{0} \sqrt{1-\left(\gamma^{2} / 4 m k\right)}} \approx \frac{m}{\gamma \omega_{0}}
$$

- The maximal amplitude of the output equals the product $A\left|G\left(i \omega_{\max }\right)\right|$.
- When the steady-state response oscillates with a much greater amplitude than the input, the system is said to be in resonance.

The frequency at which the maximal amplitude of the steady-state response occur is called the resonant frequency of the system.

- Resonance must be taken into account:
- when designing a system which vibrates or oscillates, it is important to keep track of its resonance properties. Miscalculations can lead to catastrophs!
- to build instruments as seismographs (intended to detect peaks of signals) use resonance properties.

Example: [Example 1 in Section 4.6, p. 263]
Consider the IVP

$$
y^{\prime \prime}+0.25 y^{\prime}+2 y=2 \cos (\omega t)
$$

with $y(0)=2, y^{\prime}(0)=0$.
One can compute that the IVP has the following complex-value particular solution

$$
Y(t)=\frac{3}{(i \omega)^{2}+i \omega / 8+1} e^{i \omega t}
$$

- Determine the steady-state part of the solution.
- Find the gain function $|G(i \omega)|$ of the system.
- Find the maximum value of $|G(i \omega)|$ and the frequency ω for which it occurs.

Forced vibrations without damping

In this case $\gamma=0$ and $\delta=0$. The differential equation for an undamped forced oscillator is

$$
y^{\prime \prime}+\omega_{0}^{2} y=f(t)
$$

We suppose as before that $f(t)=A \cos (\omega t)$.
The general solution is $y=y_{c}+Y_{p}$ where:

- $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)$, with c_{1}, c_{2} arbitrary constants, is the general solution of the homogenous equation $y^{\prime \prime}+\omega_{0}^{2} y=0$ [characteristic equation: $\lambda^{2}+\omega_{0}^{2}=0$; roots $\lambda= \pm i \omega_{0}$].
- Y_{p} is a particular solution of the given DE.

The particular solution Y_{p} is computed with the method of undetermined constants. Its form depends on ω and ω_{0}.

- If $\omega \neq \omega_{0}$ then $e^{i \omega t}$ is not a solution of homogeneous equation. We substitute $Y(t)=C e^{i \omega t}$ in the $D E$ to determine C. Then $Y_{p}(t)=\operatorname{Re} Y(t)$.
Computation gives $Y_{p}(t)=\frac{A}{\left(\omega_{0}^{2}-\omega^{2}\right)} \cos (\omega t)$.
- If $\omega=\omega_{0}$ then $e^{i \omega_{0} t}$ is a solution of homogeneous equation but $t e^{i \omega_{0} t}$ is not. We substitute $Y(t)=C t e^{i \omega_{0} t}$ in the DE to determine C. Then $Y_{p}(t)=\operatorname{Re} Y(t)$.
Computation gives $Y_{p}(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$.

