Section 4.6: Forced vibrations, frequency response,
and resonance

Main Topics:
@ Forced vibrations with damping
@ Forced vibrations without damping
@ Frequency and resonance.



Recall the equation describing the dynamics (or the vibrations) of a spring-mass
system:
my” +y +ky =F
where
o the unknown function y = y(t) describes the motion of the mass at time t,
e mis the mass,

o k the spring constant,

~ the damping factor,
e F = F(t) an external force applied on the system.
(m, k and ~ are positive constants).

Dividing all terms by m we get:
y'+20y +wiy =f
where
o wo = \/k/mis the natural frequency,
e = 5L is the phase,
o f(t)=E0,

m



Suppose that the external force is periodic, that is that:
f(t) = Acos(wt) or f(t) = Asin(wt)
(or a linear combination of both).
For an input force equal to Acos(wt) (or equal to Asin(wt))
o Ais the amplitude of the input force
e w is the frequency.

It is convenient to consider both terms simultaneously via complex exponentials:

f(t) = Acos(wt) + iAsin(wt) = Ae™!

Remark: the magnitude of force must be a real function.
Complex numbers are a tool to deal with both sin and cos terms at once.

The results for f(t) = Acos(wt) will be obtained from those for f(t) = Ae™" by taking
real parts; those for f(t) = Asin(wt) by taking imaginary parts.
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Forced vibrations with damping (v = 2mé # 0)

The general solution of the differential equation
y' + 26y + Wiy = Ae™!
is of the form  y(t) = yc(t) + Y(t) where

@ y. is the general solution of y” + 26y’ + w3y =0,
@ Y(t) is a particular solution of the nonhomogenous equation.

o yc is computed as for the damped free vibrations (Section 4.4).

A fundamental system of solutions yi, y» is obtained from the roots A1, A\ of the
characteristic equation
A2 426N+ wi = 0.

The nature of a fundamental system of solutions y1, y» depends on the sign of the
discriminant 62 — w2.

Remark: Since wg = \/k/m and 6 = v/2m, we have

2
2 2 _ 7 k1 2
Fowo= g = (0~ 4km)
Hence:
the signs (> 0, = 0, < 0) of 62 — w2 (here) and 42 — 4km (section 4.4) are the same

(as they should: we just divided the initial equation by m).
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o A particular solution Y(t) of the differential equation y”’ + 26y’ + w2y = Ae’!
can be determined by the method of undetermined constants:

Y(t) = Ce™! with C constant determined by substitution into the DE.
((iw)2 +26(iw) + wg) Ce™! = Ae!
A

C =
(iw)? + 26(iw) + w?
Therefore a particular (complex) solution of the differential equation is

_ A iwt
Y = (iw)? 4 26 (iw) + w?

Remark: Above we considered f(t) = Ae™".
If f(t) = Acos(wt), then a particular solution is Yre(t) = Re Y(t):

(wi — w?) cos(wt) + 26w sin(wt)
(wg — w?)? + 462w?

This solution is a steady oscillation with the same frequency w as the external force.

Yre() = A

o The function Yz, is referred to as the steady-state solution or steady-state
response or forced response.
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Suppose f(t) = Acos(wt):
The general solution solution of the differential equation y” + 26y’ + way = f(t) is
y(t) = ye(t) + Yre(t)

The explicit form of y. (already determined in Section 4.4) depends on the nature of
the roots of the characteristic equation A% 4+ 26\ + w? = 0.

The possible cases can be rewritten in terms of ¢ (phase) and wy (natural frequency),
as follows.

The roots of the characteristic equation are:

o 64/ —w? if #-wf>0

o —§ (repeated) if 6 —w2=0

o —dtiyJwi—2 if #-wk<O

As noticed in Section 4.4: . ”T ye(t) =0.
In all three cases, y. = €% x (function of t) and one can check that . "T ye(t) =0.
— 400

o The function y. is referred to as the transient solution.

However, the solution y(t) = y:(t) + Yre(t) generally does not die out as f increases.
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Example:

A mass m of 0.2 kg is attached to a spring of spring constant k = 2 N/m. The mass is
initially released from rest at 0.5 m below the equilibrium point. An external periodic
force F(t) = 5cos(4t) with period T = /2 sec is applied to the mass. Moreover, the
medium offers a resistance corresponding to a damping constant of value

~v = 1.2Nsec/m.

o Write the IVP modeling the displacement y of the mass as a function of time.

o What are the phase § and the natural frequence wo?

o Determine a (complex-value) particular solution Y(t) and the corresponding
steady-state solution Yge(?).

Determine y(t).



Frequency response

The frequency response of the system with forcing function f(t) = Acos(wt)
[or f(t) = Asin(wt)] is the ratio

Gliy = YO 1

Aet T (jw)? + 26(iw) + w?

It does not depend on the time.

In the trigonometric form: G(iw) =| G(iw) | e '*«)
where:

o the modulus of G(iw) is the gain of the frequency response:

, 1
| G(iw) |=
\/(wg — w?)? + 46°w?

o the argument of G(iw) is the following angle, called the phase of the frequency
response

2

2 —
#(w) = arccos ( \/(w w+ 462w2)

The (complex) particular solution can be written as

Y(t) = Ae“'G(iw) = A | G(iw) | €=¢)
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The particular solution for the harmonic input f(t) = Acos(wt) can be written:

Yee(t) = A| G(iw) | cos(wt — p(w))

Input: f(t) = Acos(wt)
Output: Ype(t) = 1Giw)] A cos(wt - d(w))
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m The steady-state response Y, = |G(iw)|A cos(wt — ¢p(w)) of a

spring-mass system due to the harmonic input f(r) = A cos t.

The amplitude of the output Yre(t) is A | G(iw) |
The phase of the output Yze(t) has a phase shift of magnitude ¢(w)
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How do the gain and the phase of the frequency response depend on the
frequency w of the harmonic input?

The explicit expressions are complicated:
1
\/(wg — w?)? + 46202

| G(iw) |=

Wi —u? )

o02 — w? 2+452w2 .
0

¢(w) = arccos (

o For low frequency inputs:  lim,,_,o+ |G(iw)| = 1/wg = m/k
o For very high frequency inputs:  lim,,_ o |G(iw)| = 0
o Maximal gain at w = wmax for which £ |G(iw)| = 0:

wrznax = w(% —-26= w§(1 - L)

| G(fwmax)| =

Ywo/ 1 — (72/4mk)

Remark: 0 < wmax < wo and wmax ~ wy if the damping v ~ 0.
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Resonances

For v =~ 0+ the gain is very large and tends to +oo:

m m
G(iwmax)| = ~ —
| Gllmas)| Yywo/1 — (v2/4mk)  Ywo

e The maximal amplitude of the output equals the product A | G(iwmax) |-

o When the steady-state response oscillates with a much greater amplitude than
the input, the system is said to be in resonance.

The frequency at which the maximal amplitude of the steady-state response
occur is called the resonant frequency of the system.

o Resonance must be taken into account:

e when designing a system which vibrates or oscillates, it is important to keep
track of its resonance properties. Miscalculations can lead to catastrophs!

e to build instruments as seismographs (intended to detect peaks of signals)
use resonance properties.
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Example: [Example 1 in Section 4.6, p. 263]

Consider the IVP
y" +0.25y" 4+ 2y = 2cos(wt)

with y(0) = 2, y’(0) = 0.
One can compute that the IVP has the following complex-value particular solution

3 iwt

YO = Gy siwg£1°

o Determine the steady-state part of the solution.
o Find the gain function | G(iw) | of the system.

o Find the maximum value of | G(iw) | and the frequency w for which it occurs.
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Forced vibrations without damping

In this case v = 0 and 6 = 0. The differential equation for an undamped forced
oscillator is

Y’ + Wiy = f(t)
We suppose as before that f(t) = Acos(wt).
The general solution is y = y. + Y, where:
o y(t) = cycos(wot) + cosin(wot),  with ¢y, ¢ arbitrary constants, is the general
solution of the homogenous equation y” + w2y =0
[characteristic equation: A + w? = 0; roots A = %iwy].
e Y, is a particular solution of the given DE.
The particular solution Y, is computed with the method of undetermined constants.
Its form depends on w and wy.
o If w # wy then €' is not a solution of homogeneous equation.
We substitute Y(t) = Ce’! in the DE to determine C. Then Y, () = Re Y(#).

Computation gives Yp(t) =

(wf —w?)
o Ifw=wpthen e“o'is a solution of homogeneous equation but te'*o! is not.
We substitute Y(t) = Cte™°" in the DE to determine C. Then Y,(t) = Re Y(t).

Computation gives Yp(t) = %tsin(wot).
0

cos(wt).
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