Section 4.6: Forced vibrations, frequency response, and resonance

Main Topics:

- Forced vibrations with damping
- Forced vibrations without damping
- Frequency and resonance.

Recall the equation describing the dynamics (or the vibrations) of a spring-mass system:

$$my'' + \gamma y' + ky = F$$

where

- the unknown function y = y(t) describes the motion of the mass at time t,
- *m* is the **mass**,
- k the spring constant,
- γ the damping factor,
- F = F(t) an **external force** applied on the system.

(*m*, *k* and γ are positive constants).

Dividing all terms by *m* we get:

$$y^{\prime\prime}+2\delta y^{\prime}+\omega_0^2 y=f$$

where

- $\omega_0 = \sqrt{k/m}$ is the **natural frequency**,
- $\delta = \frac{\gamma}{2m}$ is the **phase**,

•
$$f(t) = \frac{F(t)}{m}$$
.

< □ > < @ > < 注 > < 注 > … 注 のへで

Suppose that the external force is *periodic*, that is that:

 $f(t) = A\cos(\omega t)$ or $f(t) = A\sin(\omega t)$

(or a linear combination of both).

For an input force equal to $A\cos(\omega t)$ (or equal to $A\sin(\omega t)$)

- A is the amplitude of the input force
- ω is the **frequency**.

It is convenient to consider both terms simultaneously via complex exponentials:

$$f(t) = A\cos(\omega t) + iA\sin(\omega t) = Ae^{i\omega t}$$

Remark: the magnitude of force must be a real function.

Complex numbers are a tool to deal with both sin and cos terms at once.

The results for $f(t) = A\cos(\omega t)$ will be obtained from those for $f(t) = Ae^{i\omega t}$ by taking real parts; those for $f(t) = A\sin(\omega t)$ by taking imaginary parts.

Forced vibrations with damping ($\gamma = 2m\delta \neq 0$)

The general solution of the differential equation

$$y'' + 2\delta y' + \omega_0^2 y = A e^{i\omega t}$$

is of the form $y(t) = y_c(t) + Y(t)$ where

- y_c is the general solution of $y'' + 2\delta y' + \omega_0^2 y = 0$,
- Y(t) is a particular solution of the nonhomogenous equation.
- y_c is computed as for the damped free vibrations (Section 4.4).

A fundamental system of solutions y_1 , y_2 is obtained from the roots λ_1 , λ_1 of the characteristic equation

$$\lambda^2 + 2\delta\lambda + \omega_0^2 = 0.$$

The nature of a fundamental system of solutions y_1 , y_2 depends on the sign of the discriminant $\delta^2 - \omega_0^2$.

Remark: Since $\omega_0 = \sqrt{k/m}$ and $\delta = \gamma/2m$, we have

$$\delta^{2} - \omega_{0}^{2} = \frac{\gamma^{2}}{4m^{2}} - \frac{k}{m} = \frac{1}{m^{2}} (\gamma^{2} - 4km)$$

Hence:

the signs (> 0, = 0, < 0) of $\delta^2 - \omega_0^2$ (here) and $\gamma^2 - 4km$ (section 4.4) are the same (as they should: we just divided the initial equation by *m*).

• A particular solution Y(t) of the differential equation $y'' + 2\delta y' + \omega_0^2 y = Ae^{i\omega t}$ can be determined by the method of undetermined constants:

 $Y(t) = Ce^{i\omega t}$ with C constant determined by substitution into the DE.

$$((i\omega)^2 + 2\delta(i\omega) + \omega_0^2)Ce^{i\omega t} = Ae^{i\omega t}$$

i.e.

$$C = \frac{A}{(i\omega)^2 + 2\delta(i\omega) + \omega_0^2}$$

Therefore a particular (complex) solution of the differential equation is

$$Y(t) = \frac{A}{(i\omega)^2 + 2\delta(i\omega) + \omega_0^2} e^{i\omega t}$$

Remark: Above we considered $f(t) = Ae^{i\omega t}$. If $f(t) = A\cos(\omega t)$, then a particular solution is $Y_{\text{Re}}(t) = \text{Re } Y(t)$:

$$Y_{\text{Re}}(t) = A \frac{(\omega_0^2 - \omega^2)\cos(\omega t) + 2\delta\omega\sin(\omega t)}{(\omega_0^2 - \omega^2)^2 + 4\delta^2\omega^2}$$

This solution is a steady oscillation with the same frequency ω as the external force.

• The function Y_{Re} is referred to as the steady-state solution or steady-state response or forced response.

Suppose $f(t) = A\cos(\omega t)$:

The general solution solution of the differential equation $y'' + 2\delta y' + \omega_0^2 y = f(t)$ is

$$y(t) = y_c(t) + Y_{\rm Re}(t)$$

The explicit form of y_c (already determined in Section 4.4) depends on the nature of the roots of the characteristic equation $\lambda^2 + 2\delta\lambda + \omega_0^2 = 0$.

The possible cases can be *rewritten* in terms of δ (phase) and ω_0 (natural frequency), as follows.

The roots of the characteristic equation are:

• $-\delta \pm \sqrt{\delta^2 - \omega_0^2}$ if $\delta^2 - \omega_0^2 > 0$ • $-\delta$ (repeated) if $\delta^2 - \omega_0^2 = 0$ • $-\delta \pm i\sqrt{\omega_0^2 - \delta^2}$ if $\delta^2 - \omega_0^2 < 0$

As noticed in Section 4.4: $\lim_{t \to +\infty} y_c(t) = 0.$

In all three cases, $y_c = e^{-\delta t} \times ($ function of t) and one can check that $\lim_{t \to +\infty} y_c(t) = 0$.

• The function *y_c* is referred to as the **transient solution**.

However, the solution $y(t) = y_c(t) + Y_{Re}(t)$ generally **does not** die out as *t* increases.

• Imp • I

Example:

A mass *m* of 0.2 kg is attached to a spring of spring constant k = 2 N/m. The mass is initially released from rest at 0.5 m below the equilibrium point. An external periodic force $F(t) = 5\cos(4t)$ with period $T = \pi/2$ sec is applied to the mass. Moreover, the medium offers a resistance corresponding to a damping constant of value $\gamma = 1.2Nsec/m$.

- Write the IVP modeling the displacement *y* of the mass as a function of time.
- What are the phase δ and the natural frequence ω_0 ?
- Determine a (complex-value) particular solution Y(t) and the corresponding steady-state solution $Y_{\text{Re}}(t)$.
- Determine y(t).

Frequency response

The **frequency response** of the system with forcing function $f(t) = A\cos(\omega t)$ [or $f(t) = A\sin(\omega t)$] is the ratio

$$G(i\omega) = \frac{Y(t)}{Ae^{i\omega t}} = \frac{1}{(i\omega)^2 + 2\delta(i\omega) + \omega_0^2}$$

It does not depend on the time.

In the trigonometric form: $G(i\omega) = |G(i\omega)| e^{-i\phi(\omega)}$ where:

• the modulus of $G(i\omega)$ is the **gain** of the frequency response:

$$\mid G(i\omega) \mid = rac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}$$

• the argument of *G*(*i*ω) is the following angle, called the **phase of the frequency response**

$$\phi(\omega) = \arccos\left(rac{\omega_0^2-\omega^2}{\sqrt{(\omega_0^2-\omega^2)^2+4\delta^2\omega^2}}
ight)$$

The (complex) particular solution can be written as

$$Y(t) = Ae^{i\omega t}G(i\omega) = A \mid G(i\omega) \mid e^{i(\omega t - \phi(\omega))}$$

The particular solution for the **harmonic input** $f(t) = A\cos(\omega t)$ can be written:

$$Y_{\text{Re}}(t) = A \mid G(i\omega) \mid \cos(\omega t - \phi(\omega))$$

The amplitude of the output $Y_{\text{Re}}(t)$ is $A \mid G(i\omega) \mid$ The phase of the output $Y_{\text{Re}}(t)$ has a phase shift of magnitude $\phi(\omega)$

э

・ロト ・四ト ・ヨト・

How do the gain and the phase of the frequency response depend on the frequency ω of the harmonic input?

The explicit expressions are complicated:

$$|G(i\omega)| = \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}$$

$$\phi(\omega) = \arccos\Big(\frac{\omega_0^2 - \omega^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}\Big).$$

- For low frequency inputs: $\lim_{\omega \to 0^+} |G(i\omega)| = 1/\omega_0^2 = m/k$
- For very high frequency inputs: $\lim_{\omega \to +\infty} |G(i\omega)| = 0$
- Maximal gain at $\omega = \omega_{\max}$ for which $\frac{d}{d\omega}|G(i\omega)| = 0$:

$$\omega_{\max}^2 = \omega_0^2 - 2\delta = \omega_0^2 (1 - \frac{\gamma^2}{2mk})$$
$$|G(i\omega_{\max})| = \frac{m}{\gamma\omega_0\sqrt{1 - (\gamma^2/4mk)}}$$

Remark: $0 < \omega_{max} < \omega_0$ and $\omega_{max} \approx \omega_0$ if the damping $\gamma \approx 0$.

Resonances

• For $\gamma \approx$ 0+ the gain is very large and tends to $+\infty$:

$$G(i\omega_{\max})| = rac{m}{\gamma\omega_0\sqrt{1-(\gamma^2/4mk)}} pprox rac{m}{\gamma\omega_0}$$

- The maximal amplitude of the output equals the product A | G(iω_{max}) |.
- When the steady-state response oscillates with a much greater amplitude than the input, the system is said to be in **resonance**.

The frequency at which the maximal amplitude of the steady-state response occur is called the **resonant frequency** of the system.

- Resonance must be taken into account:
 - when designing a system which vibrates or oscillates, it is important to keep track of its resonance properties. Miscalculations can lead to catastrophs!
 - to build instruments as seismographs (intended to detect peaks of signals) use resonance properties.

ヘロト ヘ回ト ヘヨト ヘヨト

Example: [Example 1 in Section 4.6, p. 263] Consider the IVP

$$y'' + 0.25y' + 2y = 2\cos(\omega t)$$

with y(0) = 2, y'(0) = 0.

One can compute that the IVP has the following complex-value particular solution

$$Y(t) = \frac{3}{(i\omega)^2 + i\omega/8 + 1}e^{i\omega t}$$

- Determine the steady-state part of the solution.
- Find the gain function $| G(i\omega) |$ of the system.
- Find the maximum value of $| G(i\omega) |$ and the frequency ω for which it occurs.

Forced vibrations without damping

In this case $\gamma=$ 0 and $\delta=$ 0. The differential equation for an undamped forced oscillator is

$$y^{\prime\prime}+\omega_0^2 y=f(t)$$

We suppose as before that $f(t) = A\cos(\omega t)$.

The general solution is $y = y_c + Y_p$ where:

- y(t) = c₁ cos(ω₀t) + c₂ sin(ω₀t), with c₁, c₂ arbitrary constants, is the general solution of the homogenous equation y'' + ω₀²y = 0 [characteristic equation: λ² + ω₀² = 0; roots λ = ±iω₀].
- Y_p is a particular solution of the given DE.

The **particular solution** Y_p is computed with the method of undetermined constants. Its form depends on ω and ω_0 .

- If $\omega \neq \omega_0$ then $e^{i\omega t}$ is not a solution of homogeneous equation. We substitute $Y(t) = Ce^{i\omega t}$ in the DE to determine *C*. Then $Y_p(t) = \text{Re } Y(t)$. Computation gives $Y_p(t) = \frac{A}{(\omega_0^2 - \omega^2)} \cos(\omega t)$.
- If $\omega = \omega_0$ then $e^{i\omega_0 t}$ is a solution of homogeneous equation but $te^{i\omega_0 t}$ is not. We substitute $Y(t) = Cte^{i\omega_0 t}$ in the DE to determine *C*. Then $Y_p(t) = \text{Re } Y(t)$. Computation gives $Y_p(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$.