Section 4.7: Variations of parameters

The method of variation of parameters

(also called method of variation of constants or method of Lagrange) is a method for finding a particular solution of:

- systems of first-order linear differential equations $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$
- second order nonhomogeneous linear differential equations

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Unlike the method of undetermined constants:

- we do not assume constant coefficients,
- we do not assume that $g(t)$ has a special form.

But: it is more difficult to apply it.

Consider the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$ where

$$
\mathbf{P}(t)=\left(\begin{array}{ll}
p_{11}(t) & p_{12}(t) \\
p_{21}(t) & p_{22}(t)
\end{array}\right) \quad \text { and } \quad \mathbf{g}(t)=\binom{g_{1}(t)}{g_{2}(t)} .
$$

Let \mathbf{x}_{1} and \mathbf{x}_{2} be solutions of the homogenous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on an open interval I.
If $\quad \mathbf{x}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)}$ and $\quad \mathbf{x}_{2}(t)=\binom{x_{12}(t)}{x_{22}(t)}$, then set $\quad \mathbf{X}(t)=\left(\begin{array}{ll}x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t)\end{array}\right)$.

Theorem (Theorem 4.7.1)

Suppose that all entries of \mathbf{P} and of \mathbf{g} are continuous on the interval I. Let \mathbf{x}_{1} and \mathbf{x}_{2} be a fundamental set of solutions of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$. Then:

- $\mathbf{X}(t)$ is invertible for all $t \in I$.
- A particular solution \mathbf{x}_{p} of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$ on I is

$$
\mathbf{x}_{p}(t)=\mathbf{X}(t) \int \mathbf{X}^{-1}(t) \mathbf{g}(t) d t
$$

- The general solution of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$ on I is of the form:

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\mathbf{x}_{\rho}(t),
$$

where c_{1}, c_{2} are arbitrary constants.

Example:

Find the general solution of the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right) \mathbf{x}+\binom{t}{2 t}
$$

Remarks:

- Recall that $\mathbf{X}^{-1}(t)=\frac{1}{W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)}\left(\begin{array}{cc}x_{22}(t) & -x_{12}(t) \\ -x_{21}(t) & x_{11}(t)\end{array}\right)$
- Origin of the name "variation of parameters" or "variation of constants": the expression for \mathbf{x}_{p} is determined by substituting the vector-function

$$
\mathbf{x}_{p}(t)=u_{1}(t) \mathbf{x}_{1}(t)+u_{2}(t) \mathbf{x}_{2}(t)=\mathbf{X}(t)\binom{u_{1}(t)}{u_{2}(t)}
$$

in the system of differential equations.
That is: in the general solution

$$
c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

of the corresponding homogenous system $\mathbf{x}^{\prime}=\mathbf{P x}$, we have replaced the constants c_{1} and c_{2} with the functions $u_{1}(t)$ and $u_{2}(t)$.
The substitution yields

$$
\binom{u_{1}(t)}{u_{2}(t)}=\int \mathbf{X}^{-1}(t) \mathbf{g}(t) d t
$$

- Main difficulties of the method:
\diamond evaluating the antiderivative $\int \mathbf{X}^{-1}(t) \mathbf{g}(t) d t$
\diamond finding the fundamental solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ for systems with nonconstant coefficients.

Variation of parameters for second order linear DE's

Recall from section 4.2:

- The second order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is equivalent to the system of first order linear differential equations:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x}+\binom{0}{g(t)}
$$

where $\mathbf{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}=\binom{y(t)}{y^{\prime}(t)}$.

- The functions y_{1} and y_{2} form a fundamental set of solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

on the open interval $I \quad$ if and only if $\quad \mathbf{x}_{1}(t)=\binom{y_{1}(t)}{y_{1}^{\prime}(t)}$ and $\mathbf{x}_{2}(t)=\binom{y_{2}(t)}{y_{2}^{\prime}(t)}$ form a fundamental set of solutions on $/$ of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x} .
$$

- $Y(t)$ is a particular solution of $\quad y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ if and only if $\mathbf{x}_{p}=\binom{Y(t)}{Y^{\prime}(t)}$ is a particular solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x}+\binom{0}{g(t)}
$$

Conclusion:

The first component of \mathbf{x}_{p} from the method of variations of parameters is a particular solution $Y(t)$ of the 2nd order differential equation.

Explicitly:

Recall that the Wronskian of y_{1} and y_{2} is

$$
W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Theorem (Theorem 4.7.2)

Suppose that p, q and g are continuous on the open interval I and that y_{1} and y_{2} form a fundamental system of solutions of the homogenous differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Then a particular solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is:

$$
Y(t)=-y_{1}(t) \int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t+y_{2}(t) \int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t
$$

The general solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)
$$

where c_{1}, c_{2} are arbitrary constants.
Example: Find a particular solution of the equation $y^{\prime \prime}-3 y^{\prime}-4 y=e^{-t}$.

