Section 5.2: Properties of the Laplace transform

Main Topics:

- Laplace transform of $e^{c t} f$,
- Laplace transform of derivatives
- Laplace transform of $t^{n} f$.
- Laplace transform of differential equations.

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Theorem (Theorem 5.2.1)

If the Laplace transform of f exists for $s>a$, then one has

$$
\mathcal{L}\left\{e^{c t} f\right\}(s)=\mathcal{L}\{f\}(s-c) \quad \text { for } s>a+c
$$

for a constant c.
Example: Find the Laplace transform of $g(t)=e^{-3 t} \sin (2 t)$.
[Recall: the Laplace transform of $f(t)=\sin (b t)$ is $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$.]

Laplace Transform of derivatives

Recall (Definition 5.1.5) that g is of exponential order if there exist real constants $M \geq 0, K>0$ and a such that $|g(t)| \leq K e^{a t}$ for $t \geq M$.

Theorem (Theorem 5.2.2)

Suppose that:

- f is continuous on the interval $0 \leq t \leq A$ for all A,
- f^{\prime} is piecewise continuous on the interval $0 \leq t \leq A$ for all A,
- f and f^{\prime} are of exponential order with exponent a.

Then the Laplace transform of f^{\prime} exists for $s>a$ and is given by

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)
$$

Example:

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b s}\right\}(s)=\frac{1}{s \mp b}$ for $s>0$.]
- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$.

Since $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ and more generally $f^{(n)}=\left(f^{(n-1)}\right)^{\prime}$, we may use induction to generalize the previous theorem to higher derivatives.

Example:

If $f^{\prime}, f^{\prime \prime}$ satisfy the same conditions of f, f^{\prime} in Theorem 5.2.2, then for $s>a$

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}\right\}(s) & =s \mathcal{L}\left\{f^{\prime}\right\}(s)-f^{\prime}(0) \\
& =s[s \mathcal{L}\{f\}(s)-f(0)]-f^{\prime}(0) \\
& =s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Corollary (Corollary 5.2.3)

Suppose that

- $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous on any interval $0 \leq t \leq A$,
- $f^{(n)}$ is piecewise continuous on any interval $0 \leq t \leq A$,
- $f, f^{\prime}, \ldots, f^{(n)}$ are of exponential order, with exponent a.

Then the Laplace transform of $f^{(n)}$ exists for $s>a$ and is given by

$$
\mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{(n-1)} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

Laplace Transform of $t^{n} f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \leq t \leq A$,
- f is of exponential order with $\left|f^{(n)}(t)\right| \leq K e^{a t}$.

Then for any positive integer n, we have

$$
\mathcal{L}\left\{t^{n} f\right\}(s)=(-1)^{n}(\mathcal{L}\{f\})^{(n)}(s) \quad \text { for } s>a
$$

Example:

Compute $\mathcal{L}\{t\}, \mathcal{L}\left\{t^{2}\right\}$ and $\mathcal{L}\left\{2 t^{2}-3 t+1\right\}$.
[Recall that $\mathcal{L}\{1\}(s)=\frac{1}{s}$ for $s>0$.]

Laplace Transform of $t^{n} f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \leq t \leq A$,
- f is of exponential order with $\left|f^{(n)}(t)\right| \leq K e^{a t}$.

Then for any positive integer n, we have

$$
\mathcal{L}\left\{t^{n} f\right\}(s)=(-1)^{n}(\mathcal{L}\{f\})^{(n)}(s) \quad \text { for } s>a
$$

Example:

Compute $\mathcal{L}\{t\}, \mathcal{L}\left\{t^{2}\right\}$ and $\mathcal{L}\left\{2 t^{2}-3 t+1\right\}$.
[Recall that $\mathcal{L}\{1\}(s)=\frac{1}{s}$ for $s>0$.]
We have $\left(\frac{1}{s}\right)^{\prime}=-\frac{1}{s^{2}}$ and $\left(\frac{1}{s}\right)^{\prime \prime}=\frac{2}{s^{3}}$. Hence for $s>0$:

$$
\left.\mathcal{L}\{t\}(s)=(-1)(\mathcal{L}\{1\})^{\prime}(s)=\frac{1}{s^{2}} \quad \text { and } \quad \mathcal{L}\left\{t^{2}\right\}(s)=(-1)^{2} \mathcal{L}\{1\}\right)^{\prime \prime}(s)=\frac{2}{s^{3}}
$$

Therefore:

$$
\mathcal{L}\left\{2 t^{2}-3 t+1\right\}=2 \mathcal{L}\left\{t^{2}\right\}-3 \mathcal{L}\{t\}+\mathcal{L}\{1\}=\frac{4}{s^{3}}+3 \frac{1}{s^{2}}+\frac{1}{s} \quad \text { for } s>0
$$

By

$$
\left(\frac{1}{s}\right)^{(n)}=(-1)^{n} \frac{n!}{s^{n+1}}
$$

we get the following corollary:
Corollary (Corollary 5.2.5)
For any positive integer n, we have

$$
\mathcal{L}\left\{t^{n}\right\}(s)=\frac{n!}{s^{n+1}} \quad \text { for } s>0
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
[Assume that y satisfies the hypothesis of Corollary 5.2.3 to compute $Y=\mathcal{L}\{y\}$, $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$.]

