Section 5.2: Properties of the Laplace transform

Main Topics:

- Laplace transform of $e^{ct}f$,
- Laplace transform of derivatives
- Laplace transform of $t^n f$.
- Laplace transform of differential equations.

Laplace transform of *e*^{ct} *f*

Recall that the Laplace transform of a function f is defined by

$$\mathcal{L}{f}(s) = \int_0^{+\infty} e^{-st} f(t), dt$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Theorem (Theorem 5.2.1)

If the Laplace transform of f exists for s > a, then one has

$$\mathcal{L}\lbrace e^{ct}f\rbrace(s) = \mathcal{L}\lbrace f\rbrace(s-c)$$
 for $s > a+c$

for a constant c.

Example: Find the Laplace transform of $g(t) = e^{-3t} \sin(2t)$.

[Recall: the Laplace transform of $f(t) = \sin(bt)$ is $\mathcal{L}{f}(s) = \frac{b}{s^2+b^2}$ for s > 0.]

く 同 ト く ヨ ト く ヨ ト -

Laplace Transform of derivatives

Recall (Definition 5.1.5) that *g* is of exponential order if there exist real constants $M \ge 0$, K > 0 and *a* such that $|g(t)| \le Ke^{at}$ for $t \ge M$.

Theorem (Theorem 5.2.2)

Suppose that:

- f is continuous on the interval $0 \le t \le A$ for all A,
- f' is piecewise continuous on the interval $0 \le t \le A$ for all A,
- f and f' are of exponential order with exponent a.

Then the Laplace transform of f' exists for s > a and is given by

 $\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0).$

Example:

- Compute the Laplace transform of $g(t) = \cos(bt)$ where $b \in \mathbb{R}$, $b \neq 0$. [Recall that $\mathcal{L}\{e^{\pm ibs}\}(s) = \frac{1}{s \equiv b}$ for s > 0.]
- Verify the formula $\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) f(0)$ for $f(t) = \sin(bt)$.

Since f'' = (f')' and more generally $f^{(n)} = (f^{(n-1)})'$, we may use induction to generalize the previous theorem to higher derivatives.

Example:

If f', f'' satisfy the same conditions of f, f' in Theorem 5.2.2, then for s > a

$$\mathcal{L}\{f''\}(s) = s\mathcal{L}\{f'\}(s) - f'(0) = s[s\mathcal{L}\{f\}(s) - f(0)] - f'(0) = s^2\mathcal{L}\{f\}(s) - sf(0) - f'(0).$$

Corollary (Corollary 5.2.3)

Suppose that

- $f, f', \ldots, f^{(n-1)}$ are continuous on any interval $0 \le t \le A$,
- $f^{(n)}$ is piecewise continuous on any interval $0 \le t \le A$,
- $f, f', ..., f^{(n)}$ are of exponential order, with exponent a.

Then the Laplace transform of $f^{(n)}$ exists for s > a and is given by

$$\mathcal{L}\{f^{(n)}\}(s) = s^{n}\mathcal{L}\{f\}(s) - s^{(n-1)}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

4/7

Laplace Transform of $t^n f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \le t \le A$,
- *f* is of exponential order with $|f^{(n)}(t)| \leq Ke^{at}$.

Then for any positive integer n, we have

 $\mathcal{L}\{t^n f\}(s) = (-1)^n (\mathcal{L}\{f\})^{(n)}(s) \quad \text{for } s > a.$

Example:

Compute $\mathcal{L}{t}$, $\mathcal{L}{t^2}$ and $\mathcal{L}{2t^2 - 3t + 1}$. [Recall that $\mathcal{L}{1}(s) = \frac{1}{s}$ for s > 0.]

Laplace Transform of $t^n f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \le t \le A$,
- *f* is of exponential order with $|f^{(n)}(t)| \leq Ke^{at}$.

Then for any positive integer n, we have

 $\mathcal{L}{t^n f}(s) = (-1)^n (\mathcal{L}{f})^{(n)}(s)$ for s > a.

Example:

Compute
$$\mathcal{L}\{t\}, \mathcal{L}\{t^2\}$$
 and $\mathcal{L}\{2t^2 - 3t + 1\}$.
[Recall that $\mathcal{L}\{1\}(s) = \frac{1}{s}$ for $s > 0$.]
We have $(\frac{1}{s})' = -\frac{1}{s^2}$ and $(\frac{1}{s})'' = \frac{2}{s^3}$. Hence for $s > 0$:
 $\mathcal{L}\{t\}(s) = (-1)(\mathcal{L}\{1\})'(s) = \frac{1}{s^2}$ and $\mathcal{L}\{t^2\}(s) = (-1)^2 \mathcal{L}\{1\})''(s) = \frac{2}{s^3}$

Therefore:

$$\mathcal{L}\{2t^2 - 3t + 1\} = 2\mathcal{L}\{t^2\} - 3\mathcal{L}\{t\} + \mathcal{L}\{1\} = \frac{4}{s^3} + 3\frac{1}{s^2} + \frac{1}{s} \quad \text{for } s > 0.$$

By

$$\left(\frac{1}{s}\right)^{(n)} = (-1)^n \frac{n!}{s^{n+1}},$$

we get the following corollary:

Corollary (Corollary 5.2.5)

For any positive integer n, we have

$$\mathcal{L}\lbrace t^n\rbrace(s)=rac{n!}{s^{n+1}}\qquad ext{for }s>0\,.$$

Laplace Transform of differential equations

Compute the Laplace transform Y(s) of the solution y(t) of the differential equation

$$y'' + 3y' + 2y = e^{-3i}$$

which satisfies with initial conditions y(0) = 1, y'(0) = 0.

[Assume that y satisfies the hypothesis of Corollary 5.2.3 to compute $Y = \mathcal{L}\{y\}$, $\mathcal{L}\{y'\}$ and $\mathcal{L}\{y''\}$.]