Section 5.4: Solving differential equation with Laplace transforms

Main Topics:

The Laplace transform method to solve initial value problems for

- second order linear DEs with constant coefficients
- higher order linear DEs with constant coefficients
- systems of first order linear DEs with constant coefficients

The Laplace transform method

From Sections 5.1 and 5.2: applying the Laplace transform to the IVP

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t) \quad \text { with initial conditions } y(0)=y_{0}, y^{\prime}(0)=y_{1}
$$

leads to an algebraic equation for $Y=\mathcal{L}\{y\}$, where $y(t)$ is the solution of the IVP.
The algebraic equation can be solved for $Y=\mathcal{L}\{y\}$.
Inverting the Laplace transform leads to the solution $y=\mathcal{L}^{-1}\{Y\}$.

FIGURE 5.0.1 Laplace transform method for solving differential equations.
From: J. Brannan \& W. Joyce, Differential equations.

Example:

Solve the IVP: $\quad y^{\prime \prime}+3 y^{\prime}+2 y=e^{-3 t}$ with initial conditions $y(0)=1, y^{\prime}(0)=0$.

- Apply the Laplace transform to both sides of the DE:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}\right\}+3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \\
& \text { i.e. } \quad\left[s^{2} \mathcal{L}\{y\}(s)-s y(0)-y^{\prime}(0)\right]-3[s \mathcal{L}\{y\}(s)-y(0)]+2 \mathcal{L}\{y\}(s)=\frac{1}{s+3} \\
& \text { i.e. } \quad\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-3[s Y(s)-y(0)]+2 Y(s)=\frac{1}{s+3}
\end{aligned}
$$

where $Y(s)=\mathcal{L}\{y\}(s)$.

- Insert the initial condition $y(0)=1, y^{\prime}(0)=0$:

$$
\left[s^{2} Y(s)-s\right]-3[s Y(s)-1]+2 Y(s)=\frac{1}{s+3}
$$

- Solve for $Y(s)$:

$$
Y(s)=\frac{s-3}{s^{2}-3 s+2}+\frac{1}{(s+3)\left(s^{2}-3 s+2\right)}=\frac{s^{2}-8}{(s+3)(s-2)(s-1)}
$$

Remark: $s^{2}-3 s+2$ is the characteristic polynomial of the DE $y^{\prime \prime}+3 y^{\prime}+2 y=0$.

- Compute $\mathcal{L}^{-1}\{Y\}$ for $Y(s)=\frac{s^{2}-8}{(s+3)(s-2)(s-1)}$:
(1) Partial fraction decomposition:

$$
\frac{s^{2}-8}{(s+3)(s-2)(s-1)}=\frac{A}{s+3}+\frac{B}{s-2}+\frac{C}{s-1}
$$

is equivalent to

$$
(A+B+C) s^{2}=(-3 A+2 B+C) s+(2 A-3 B-6 C)=s^{2}-8 .
$$

Equating the coefficients of s^{2}, s and 1 leads to a linear system of equations in A, B, C.
Solution: $A=\frac{1}{20}, B=-\frac{4}{5}, C=\frac{1}{20}$.
(2) Linearity of \mathcal{L}^{-1} :

$$
\mathcal{L}^{-1}\{Y(s)\}=A \mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\}+B \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\}+C \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} .
$$

(3) Look at the tables to find the inverse Laplace transforms: if $F(s)=\frac{1}{s-a}$
$(s>a)$, then $\mathcal{L}^{-1}\{F\}(t)=e^{a t}$.

- Conclusion: $y(t)=\mathcal{L}^{-1}\{Y\}=\frac{1}{20} e^{-3 t}-\frac{4}{5} e^{2 t}+\frac{7}{4} e^{t}$.

In general, taking the Laplace transform of the initial value problem:

$$
a y^{\prime \prime}+b y^{\prime}+c y=f \quad \text { with } \quad y(0)=y_{0} \quad \text { and } \quad y^{\prime}(0)=y_{1}
$$

gives

$$
a\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+b[s Y(s)-y(0)]+c Y(s)=F(s)
$$

where:

- $Y(s)=\mathcal{L}\{y\}(s)$ is the Laplace transform of y,
- $F(s)=\mathcal{L}\{f\}(s)$ is the Laplace transform of f.

It can be rewritten as

$$
\left(a s^{2}+b s+c\right) Y(s)-(a s+b) y(0)-a y^{\prime}(0)=F(s) .
$$

So,

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}+\frac{F(s)}{a s^{2}+b s+c}
$$

The denominator $a s^{2}+b s+c$ is the characteristic polynomial of $a y^{\prime \prime}+b y^{\prime}+c y=f$.
(Recall that $a s^{2}+b s+c=0$ is its characteristic equation.)

This can be generalized to constant coefficient linear DE of arbitrary order:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

with

$$
y^{(n-1)}(0)=y_{n-1}, y^{(n-2)}(0)=y_{n-2}, \cdots, y(0)=y_{0} .
$$

The Laplace transform $Y(s)=\mathcal{L}\{y\}(s)$ of the solution $y(t)$ is

$$
\begin{aligned}
Y(s)= & \frac{\left(a_{n} s^{n-1}+\cdots+a_{1}\right) y(0)+\cdots+\left(a_{n} s+a_{n-1}\right) y^{(n-2)}(0)+a_{n} y^{(n-1)}(0)}{a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}} \\
& +\frac{F(s)}{a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
\end{aligned}
$$

where $F(s)=\mathcal{L}\{f\}(s)$ is the Laplace transform of f.
Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } \quad y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Laplace transform method for systems of 1st order linear DEs

Consider the system of first order constant coefficient linear DE with initial conditions:

$$
\begin{aligned}
y_{1}^{\prime} & =a_{11} y_{1}+a_{12} y_{2}+f_{1}(t) \\
y_{2}^{\prime} & =a_{21} y_{1}+a_{22} y_{2}+f_{2}(t)
\end{aligned}
$$

with initial conditions $y_{1}(0)=y_{10}, y_{2}(0)=y_{20}$.
Take the Laplace transform of each equation and set

$$
Y_{1}=\mathcal{L}\left\{y_{1}\right\}, \quad Y_{2}=\mathcal{L}\left\{y_{2}\right\}, \quad F_{1}=\mathcal{L}\left\{f_{1}\right\}, \quad F_{2}=\mathcal{L}\left\{f_{2}\right\} .
$$

We get:

$$
\begin{aligned}
& s Y_{1}-y_{1}(0)=a_{11} Y_{1}+a_{12} Y_{2}+F_{1}(t) \\
& s Y_{2}-y_{2}(0)=a_{21} Y_{1}+a_{22} Y_{2}+F_{2}(t)
\end{aligned}
$$

This can be rewritten as

$$
\begin{aligned}
\left(s-a_{11}\right) Y_{1}-a_{12} Y_{2} & =y_{10}+F_{1}(s) \\
-a_{21} Y_{1}+\left(s-a_{22}\right) Y_{2} & =y_{20}+F_{2}(s)
\end{aligned}
$$

Matrix reformulation:

$$
(s \mathbf{I}-\mathbf{A}) \mathbf{Y}=\mathbf{y}_{0}+\mathbf{F}(s)
$$

with

$$
\mathbf{A}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad \mathbf{F}(s)=\binom{F_{1}(s)}{F_{2}(s)}, \quad \mathbf{y}_{0}=\binom{y_{10}}{y_{20}}, \quad \mathbf{Y}=\binom{Y_{1}}{Y_{2}}
$$

If the matrix $\boldsymbol{s l}-\mathbf{A}$ is invertible, then we can solve for \mathbf{Y} :

$$
\mathbf{Y}=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{y}_{0}+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{F}(s)
$$

The solution of of the given IVP is:

$$
\binom{y_{1}}{y_{2}}=\binom{\mathcal{L}\left\{Y_{1}\right\}}{\mathcal{L}\left\{Y_{2}\right\}}
$$

Example: Use the Laplace transform method to solve the initial value problem

$$
\begin{aligned}
y_{1}^{\prime} & =-y_{1}+y_{2}+e^{t} \\
y_{2}^{\prime} & =y_{1}-y_{2}+e^{t}
\end{aligned}
$$

with $y_{1}(0)=1$ and $y_{2}(0)=1$

