Section 5.7: Impulse functions

Main Topics:

- Impulse functions,
- Dirac's delta,
- and thier Laplace transform

In some applications, one needs to model forced systems where the external force has large magnitude but acts for a very short time. **e.g.:** a mass hit by a hammer If g(t) is the function describing the external force at time t and the action starts at $t = t_0$ and lasts for a small time $\epsilon > 0$, then:

- g(t) is large when t belongs to [t₀, t₀ + ε);
- g(t) = 0 outside this interval.

Definition

The total **impulse** of the force g(t) over the interval $[t_0, t_0 + \epsilon)$ is the integral

$$I(\epsilon) = \int_{t_0}^{t_0+\epsilon} g(t) dt = \int_{-\infty}^{+\infty} g(t) dt$$
.

The total impulse is the area of the region between the bell and the *t*-axis.

A force of large magnitude active during the short time interval $[t_0, t_0 + \epsilon)$.

< ∃⇒

Definition

For $\epsilon > 0$, define the function

$$\delta_{\epsilon}(t) = \frac{u_{0}(t) - u_{\epsilon}(t)}{\epsilon} = \begin{cases} \frac{1}{\epsilon} & \text{if } 0 \le t < \epsilon \\ \\ 0 & \text{if } t < 0 \text{ or } t \ge \epsilon \end{cases}$$

Graph of $\delta_{\epsilon}(t)$ for $\epsilon = 0.25$, 0.1 and 0.05.

For every $\epsilon > 0$ the area beneath the graph of $\delta_{\epsilon}(t)$ is 1.

The region beneath $\delta_{\epsilon}(t)$ is similar to the region beneath the graph of a force with large magnitude and active for short time $[0, \epsilon)$ when ϵ is very small.

- $\delta_{\epsilon}(t) = \frac{u_0(t) u_{\epsilon}(t)}{\epsilon}$ approximates an impulse function acting in $[0, \epsilon)$ if ϵ is small.
- If ε is small and f is continuous on [0, ε), then f(t) ≈ f(0) for t ∈ [0, ε).
 Hence for every interval [a, b] containing [0, ε):

$$\int_a^b f(t)\delta_\epsilon(t)\,dt = \frac{1}{\epsilon}\int_0^\epsilon f(t)\,dt \approx f(0)\frac{1}{\epsilon}\int_0^\epsilon dt = f(0)\,.$$

The approximation is better the smaller ϵ is.

Wanted:

- The impulse should acting on $[t_0, t_0 + \epsilon)$ and not only on $[0, \epsilon) \rightsquigarrow$ consider $\delta_{\epsilon}(t t_0)$
- Take ϵ "as small as" possible \rightsquigarrow take $\delta(t t_0) \approx \lim_{\epsilon \to 0} \delta_{\epsilon}(t t_0)$,

Here \approx means that we look for a "function" (or a mathematical object) having the properties that $\lim_{\epsilon \to 0} \delta_{\epsilon}(t - t_0)$ would have (if the limit existed).

The "function" δ we are looking for is such that $\delta(t - t_0)$ should satisfy the following properties:

(a)
$$\delta(t - t_0) = \lim_{\epsilon \to 0} \delta_{\epsilon}(t - t_0) = 0$$
 for $t \neq t_0$.
(b) $\int_a^b f(t)\delta(t - t_0)dt = \lim_{\epsilon \to 0} \int_a^b f(t)\delta_{\epsilon}(t - t_0)dt = f(t_0)$
for any function *f* continuous on an interval $a \le t_0 < b$.

There is no ordinary function satisfying these properties. Nevertheless, the above properties can define a mathematical object which goes under the name of a **generalized function** (or **distribution**).

 δ defined by (1) and (2) is a generalized function. It is often known under the name of **delta function** (or **Dirac delta function** or **Dirac delta** or, more appropriately, **Dirac delta distribution**).

3

イロト 不得 トイヨト イヨト

Paul Adrien Maurice Dirac (1902–1984).

English theoretical physicist.

Dirac made fundamental contributions to both quantum mechanics and quantum electrodynamics.

Nobel Prize in Physics in 1933

Since $t \mapsto e^{-st}$ is a continuous function of *t* for every fixed *s*, we obtain from the second property of δ :

If $t_0 \ge 0$ is arbitrarily fixed, then

$$\mathcal{L}\{\delta(t-t_0)\}(s)=\int_0^\infty e^{-st}\delta(t-t_0)dt=e^{-st_0}.$$

In particular, if $t_0 = 0$, then:

$$\mathcal{L}{\delta(t)}(s) = \int_0^\infty e^{-st} \delta(t) dt = 1.$$

Example:

Find the solution of the following initial value problems:

•
$$y'' + 4y = \delta(t - 4\pi)$$
 with $y(0) = 0$ and $y'(0) = 0$

•
$$2y'' + y' + 6y = \delta(t - \pi/6) \sin t$$
 with $y(0) = 0$ and $y'(0) = 0$.