Section 5.7: Impulse functions

Main Topics:

- Impulse functions,
- Dirac's delta,
- and thier Laplace transform

In some applications, one needs to model forced systems where the external force has large magnitude but acts for a very short time.
e.g.: a mass hit by a hammer If $g(t)$ is the function describing the external force at time t and the action starts at $t=t_{0}$ and lasts for a small time $\epsilon>0$, then:

- $g(t)$ is large when t belongs to $\left[t_{0}, t_{0}+\epsilon\right)$;
- $g(t)=0$ outside this interval.

Definition

The total impulse of the force $g(t)$ over the interval $\left[t_{0}, t_{0}+\epsilon\right)$ is the integral

$$
I(\epsilon)=\int_{t_{0}}^{t_{0}+\epsilon} g(t) d t=\int_{-\infty}^{+\infty} g(t) d t
$$

The total impulse is the area of the region between the bell and the t-axis.

A force of large magnitude active during the short time interval $\left[t_{0}, t_{0}+\epsilon\right)$.

Definition

For $\epsilon>0$, define the function

$$
\delta_{\epsilon}(t)=\frac{u_{0}(t)-u_{\epsilon}(t)}{\epsilon}= \begin{cases}\frac{1}{\epsilon} & \text { if } 0 \leq t<\epsilon \\ 0 & \text { if } t<0 \text { or } t \geq \epsilon\end{cases}
$$

Graph of $\delta_{\epsilon}(t)$ for $\epsilon=0.25,0.1$ and 0.05 .

For every $\epsilon>0$ the area beneath the graph of $\delta_{\epsilon}(t)$ is 1 .

The region beneath $\delta_{\epsilon}(t)$ is similar to the region beneath the graph of a force with large magnitude and active for short time $[0, \epsilon)$ when ϵ is very small.

- $\delta_{\epsilon}(t)=\frac{u_{0}(t)-u_{\epsilon}(t)}{\epsilon}$ approximates an impulse function acting in $[0, \epsilon)$ if ϵ is small.
- If ϵ is small and f is continuous on $[0, \epsilon)$, then $f(t) \approx f(0)$ for $t \in[0, \epsilon)$. Hence for every interval $[a, b]$ containing $[0, \epsilon)$:

$$
\int_{a}^{b} f(t) \delta_{\epsilon}(t) d t=\frac{1}{\epsilon} \int_{0}^{\epsilon} f(t) d t \approx f(0) \frac{1}{\epsilon} \int_{0}^{\epsilon} d t=f(0)
$$

The approximation is better the smaller ϵ is.

Wanted:

- The impulse should acting on $\left[t_{0}, t_{0}+\epsilon\right.$) and not only on $[0, \epsilon) \leadsto c$ consider $\delta_{\epsilon}\left(t-t_{0}\right)$
- Take ϵ "as small as" possible \rightsquigarrow take $\delta\left(t-t_{0}\right) \approx \lim _{\epsilon \rightarrow 0} \delta_{\epsilon}\left(t-t_{0}\right)$,

Here \approx means that we look for a "function" (or a mathematical object) having the properties that $\lim _{\epsilon \rightarrow 0} \delta_{\epsilon}\left(t-t_{0}\right)$ would have (if the limit existed).

The "function" δ we are looking for is such that $\delta\left(t-t_{0}\right)$ should satisfy the following properties:
(a) $\delta\left(t-t_{0}\right)=\lim _{\epsilon \rightarrow 0} \delta_{\epsilon}\left(t-t_{0}\right)=0$ for $t \neq t_{0}$.
(b) $\int_{a}^{b} f(t) \delta\left(t-t_{0}\right) d t=\lim _{\epsilon \rightarrow 0} \int_{a}^{b} f(t) \delta_{\epsilon}\left(t-t_{0}\right) d t=f\left(t_{0}\right)$
for any function f continuous on an interval $a \leq t_{0}<b$.
There is no ordinary function satisfying these properties. Nevertheless, the above properties can define a mathematical object which goes under the name of a generalized function (or distribution).
δ defined by (1) and (2) is a generalized function. It is often known under the name of delta function (or Dirac delta function or Dirac delta or, more appropriately, Dirac delta distribution).

Paul Adrien Maurice Dirac (1902-1984).

English theoretical physicist.
Dirac made fundamental contributions to both quantum mechanics and quantum electrodynamics.
Nobel Prize in Physics in 1933

Since $t \mapsto e^{-s t}$ is a continuous function of t for every fixed s, we obtain from the second property of δ :

If $t_{0} \geq 0$ is arbitrarily fixed, then

$$
\mathcal{L}\left\{\delta\left(t-t_{0}\right)\right\}(s)=\int_{0}^{\infty} e^{-s t} \delta\left(t-t_{0}\right) d t=e^{-s t_{0}} .
$$

In particular, if $t_{0}=0$, then:

$$
\mathcal{L}\{\delta(t)\}(s)=\int_{0}^{\infty} e^{-s t} \delta(t) d t=1 .
$$

Example:

Find the solution of the following initial value problems:

- $y^{\prime \prime}+4 y=\delta(t-4 \pi) \quad$ with $y(0)=0$ and $y^{\prime}(0)=0$
- $2 y^{\prime \prime}+y^{\prime}+6 y=\delta(t-\pi / 6) \sin t \quad$ with $y(0)=0$ and $y^{\prime}(0)=0$.

