Section 6.4: Nondefective matrices with complex eigenvalues

Consider the system $\mathbf{x}^{\prime}=A \mathbf{x}$ where A is a $n \times n$ with real coefficients and nondefective.
Suppose that not all eigenvalues of A are real.
Since A has real coefficients, as in the case of 2×2-matrices, we have:

- for any complex eigenvalue $\lambda=\mu+i \nu$ of A, also $\bar{\lambda}$ is an eigenvalue of A.
- if $\mathbf{v}=\mathbf{a}+\boldsymbol{i} \mathbf{b}$ is eigenvector of A of eigenvalue λ, then
- $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ is a complex-valued solution of $\mathbf{x}^{\prime}=A \mathbf{x}$.
- the real-valued vector functions

$$
\begin{aligned}
& \mathbf{u}(t)=\operatorname{Re} \mathbf{x}(t)=e^{\mu t}(\mathbf{a} \cos (\nu t)-\mathbf{b} \sin (\nu t)) \\
& \mathbf{w}(t)=\operatorname{Im} \mathbf{x}(t)=e^{\mu t}(\mathbf{a} \sin (\nu t)+\mathbf{b} \cos (\nu t))
\end{aligned}
$$

are linearly independent solutions of $\mathbf{x}^{\prime}=\boldsymbol{A} \mathbf{x}$.

Theorem

Let A be an $n \times n$ nondefective matrix. Suppose that A has:

- complex (not real) eigenvalues $\lambda_{1}, \overline{\lambda_{1}}, \ldots, \lambda_{m}, \overline{\lambda_{m}}$
- real eigenvalues $\lambda_{2 m+1}, \ldots, \lambda_{n}$

Let

$$
\mathbf{v}_{1}, \overline{\mathbf{v}_{1}}, \ldots, \mathbf{v}_{m}, \overline{\mathbf{v}_{m}} \quad \text { and } \quad \mathbf{v}_{2 m+1}, \ldots, \mathbf{v}_{n}
$$

be the n corresponding linearly independent eigenvectors (they exist as A is nondefective).
Then the general solution of the system $\mathbf{x}^{\prime}=A \mathbf{x}$ is
$\mathbf{x}(t)=C_{1} \mathbf{u}_{1}(t)+C_{2} \mathbf{w}_{1}(t)+\cdots+C_{2 m-1} \mathbf{u}_{m}(t)+C_{2 m} \mathbf{w}_{m}(t)$
where

$$
+C_{2 m+1} \mathbf{x}_{2 m+1}(t)+\cdots+C_{n} \mathbf{x}_{n}(t)
$$

- for $j=1, \ldots, m: \quad \mathbf{u}_{j}=\operatorname{Re} \mathbf{x}_{j} \quad$ and $\quad \mathbf{w}_{j}=\operatorname{Im} \mathbf{x}_{j} \quad$ are the real-valued solutions corresponding to the complex eigenvalue λ_{j} and its complex eigenvector \mathbf{v}_{j}
- for $j=2 m+1, \ldots, n: \quad \mathbf{x}_{j} \quad$ is the solution corresponding to the real eigenvalue λ_{j} and its real eigenvector \mathbf{v}_{j}.

Example: Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ where $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$
(cf. example in Section 3.4)
Characteristic equation: $\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}1-\lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 0 & -1 & -\lambda\end{array}\right|=0 \quad$ i.e. $(1-\lambda)\left(\lambda^{2}+1\right)=0$
Eigenvalues $\lambda_{1}=i, \lambda_{2}=-i, \lambda_{3}=1$.
Eigenvectors
for $\lambda_{1}=i: \quad \mathbf{v}_{1}=\left(\begin{array}{l}0 \\ 1 \\ i\end{array}\right)=\underbrace{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)}_{\mathbf{a}}+\underbrace{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)}_{\mathbf{b}} \quad$ and for $\lambda_{1}=1: \quad \mathbf{v}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
Two linearly independent real solutions for $\lambda_{1}=\mu+i \nu$ with $\mu=0, \nu=1$:

$$
\begin{aligned}
& \mathbf{u}(t)=\operatorname{Re} \mathbf{x}(t)=e^{\mu t}(\mathbf{a} \cos (\nu t)-\mathbf{b} \sin (\nu t))=\cos t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\sin t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
\cos t \\
-\sin t
\end{array}\right) \\
& \mathbf{w}(t)=\operatorname{Im} \mathbf{x}(t)=e^{\mu t}(\mathbf{a} \sin (\nu t)+\mathbf{b} \cos (\nu t))=\sin t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\cos t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
\sin t \\
\cos t
\end{array}\right) \\
& \text { Solution corresponding to the real eigenvalue } \lambda_{3}=1: \quad \mathbf{x}_{3}(t)=e^{t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

General solution: $\mathbf{x}(t)=C_{1} \mathbf{u}(t)+C_{2} \mathbf{w}(t)+C_{3} \mathbf{x}_{3}(t)$, where C_{1}, C_{2}, C_{3} are constant, $t \in \mathbb{R}$.

