Section 6.4: Nondefective matrices with complex eigenvalues

Consider the system $\mathbf{x}' = A\mathbf{x}$ where *A* is a $n \times n$ with real coefficients and nondefective.

Suppose that not all eigenvalues of A are real.

Since A has real coefficients, as in the case of 2×2 -matrices, we have:

- for any complex eigenvalue $\lambda = \mu + i\nu$ of A, also $\overline{\lambda}$ is an eigenvalue of A.
- if **v** = **a** + *i***b** is eigenvector of A of eigenvalue λ, then
 - $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a complex-valued solution of $\mathbf{x}' = A\mathbf{x}$.
 - the real-valued vector functions

$$\mathbf{u}(t) = \operatorname{Re} \mathbf{x}(t) = \mathbf{e}^{\mu t} (\mathbf{a} \cos(\nu t) - \mathbf{b} \sin(\nu t))$$
$$\mathbf{w}(t) = \operatorname{Im} \mathbf{x}(t) = \mathbf{e}^{\mu t} (\mathbf{a} \sin(\nu t) + \mathbf{b} \cos(\nu t))$$

are linearly independent solutions of $\mathbf{x}' = A\mathbf{x}$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem

Let A be an $n \times n$ nondefective matrix. Suppose that A has:

- complex (not real) eigenvalues $\lambda_1, \overline{\lambda_1}, \ldots, \lambda_m, \overline{\lambda_m}$
- real eigenvalues $\lambda_{2m+1}, \ldots, \lambda_n$

Let

$$\mathbf{v}_1, \overline{\mathbf{v}_1}, \dots, \mathbf{v}_m, \overline{\mathbf{v}_m}$$
 and $\mathbf{v}_{2m+1}, \dots, \mathbf{v}_n$

be the n corresponding linearly independent eigenvectors (they exist as A is nondefective).

Then the general solution of the system $\mathbf{x}' = A\mathbf{x}$ is

$$\mathbf{x}(t) = C_1 \mathbf{u}_1(t) + C_2 \mathbf{w}_1(t) + \dots + C_{2m-1} \mathbf{u}_m(t) + C_{2m} \mathbf{w}_m(t)$$

where

 $+ C_{2m+1} \mathbf{x}_{2m+1}(t) + \cdots + C_n \mathbf{x}_n(t)$ • for j = 1, ..., m: $\mathbf{u}_i = \operatorname{Re} \mathbf{x}_i$ and $\mathbf{w}_i = \operatorname{Im} \mathbf{x}_i$ are the real-valued solutions corresponding to the complex eigenvalue λ_i and its complex

eigenvector \mathbf{v}_i

• for j = 2m + 1, ..., n: \mathbf{x}_i is the solution corresponding to the real eigenvalue λ_i and its real eigenvector \mathbf{v}_i .

э

イロト 不得 トイヨト イヨト

Example: Find the general solution of $\mathbf{x}' = A\mathbf{x}$ where $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$

(cf. example in Section 3.4)

Characteristic equation: det
$$(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 0 & -1 & -\lambda \end{vmatrix} = 0$$
 i.e. $(1 - \lambda)(\lambda^2 + 1) = 0$

Eigenvalues $\lambda_1 = i$, $\lambda_2 = -i$, $\lambda_3 = 1$. Eigenvectors

for
$$\lambda_1 = i$$
: $\mathbf{v}_1 = \begin{pmatrix} 0\\1\\i \end{pmatrix} = \underbrace{\begin{pmatrix} 0\\1\\0 \end{pmatrix}}_{\mathbf{a}} + i \underbrace{\begin{pmatrix} 0\\0\\1 \end{pmatrix}}_{\mathbf{b}}$ and for $\lambda_1 = 1$: $\mathbf{v}_3 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$

Two linearly independent real solutions for $\lambda_1 = \mu + i\nu$ with $\mu = 0, \nu = 1$:

$$\mathbf{u}(t) = \operatorname{Re} \mathbf{x}(t) = e^{\mu t} (\mathbf{a} \cos(\nu t) - \mathbf{b} \sin(\nu t)) = \cos t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \sin t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \cos t \\ -\sin t \end{pmatrix}$$
$$\mathbf{w}(t) = \operatorname{Im} \mathbf{x}(t) = e^{\mu t} (\mathbf{a} \sin(\nu t) + \mathbf{b} \cos(\nu t)) = \sin t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \cos t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \sin t \\ \cos t \end{pmatrix}$$
Solution corresponding to the real eigenvalue $\lambda_3 = 1$: $\mathbf{x}_3(t) = e^t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
General solution: $\mathbf{x}(t) = C_1 \mathbf{u}(t) + C_2 \mathbf{w}(t) + C_3 \mathbf{x}_3(t)$, where C_1, C_2, C_3 are constant, $t \in \mathbb{R}$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・