
Section 7.4: Predator-prey equations

Main Topics:

Mathematical models of predator-prey situations:
One species (the predators) lives on the the other species (the prey), the preys
live on a different source of food.

Examples:
. Foxes live on the rabbits they prey, while the rabbits live on vegetables.
. Lions hunt zebras, while zebras eat grass.

Lokta-Volterra equations,

Long time behavior of solutions.
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The Lotka-Volterra equations

Let x(t) denote the size of the prey and y(t) the size of the predators at time t .

We consider a model for the interaction predator-prey satisfying the following
assumptions:

in the absence of predators, the prey grows at a rate proportional to the current
population:

dx
dt

= ax if y = 0

in the absence of preys, the predator dies out:

dy
dt

= −cy , where c > 0, if x = 0

The encounter between the two species promotes the growth of the predators
and causes a shrinking of the prey. This means:

the growth of x is affected by a term −αxy , where α > 0,

the growth of y is affected by a term γxy , where γ > 0.
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The equations in the resulting models are known as the Lotka-Volterra equations:

dx
dt

= x(a− αy)

dy
dt

= y(−c + γx)

The constants a, b, α and γ are all positive.

a is the growth rate of the prey,

c is the death rate of the predator,

α and γ measure the interactions between the two species.

Example:

dx
dt

= x(1− 0.5y)

dy
dt

= y(−0.75 + 0.25x)

for x and y positive.
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Critical points: (0, 0) and (3, 2)
The system is almost linear near each critial point.

Case of (0, 0): Extinction of both predators and prey.
The approximating linear system is

d
dt

(
x
y

)
=

(
1 0
0 −0.75

)(
x
y

)
Eigenvalues of the matrix of coefficients:

λ1 = 1 for the eigenvector
(

1
0

)
λ2 = −0.75 for the eigenvector

(
0
1

)
The general (vector) solution of the linear approximation is(

x
y

)
= c1et

(
1
0

)
+ c2e−0.75t

(
0
1

)
One pair of trajectories approaches the critical point along y -axis, another departs
along x-axis. All other trajectories differenti from those along the y -axis depart from
the origin.

The critical point (0, 0) is an unstable saddle point for both linear and nonlinear
systems.
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Case of (3, 2): Survival of both predators and prey.

The approximating linear system is

d
dt

(
u
w

)
=

(
0 −1.5

0.5 0

)(
u
w

)
where u = x − 3 and w = y − 2 and the matrix is the value at (3, 2) of the Jacobian
the system

J =

(
1− 0.5y −0.5x

0.25y −0.75 + 0.25x

)
The eigenvalues of the matrix

(
0 −1.5

0.5 0

)
=

(
0 −3/2

1/2 0

)
are purely imaginary:

λ1 = i
√

3/2 and λ2 = −i
√

3/2 .

The critical point (3, 2) is a stable center for the above linear differential system.

What about the nonlinear system?

The table of Section 7.2 does not provide an answer in this case.
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Idea (still for the linear system): find a relation between u and w .
We know that:

du
dt

= −3
2

w and
dw
dt

=
1
2

u

that is
dw
du

=
dw/dt
du/dt

=
1
2 u
− 3

2 w
= −1

3
u
w

i.e.
3w

dw
du

= −u

By integration
u2 + 3w2 = C , C=constant

Concentric ellipses with center (0, 0) in the (u, v) plane,
i.e. concentric ellipses with center (3, 2) in the (x , y) plane.
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Try the same method for the nonlinear system:
We know that:

dx
dt

= x(1− 0.5y)

dy
dt

= y(−0.75 + 0.25x)

So
dy
dx

=
dy/dt
dx/dt

=
−0.75 + 0.25x

x
y

1− 0.5y
i.e. (1

y
− 1

2

)dy
dx

= −3
4

1
x
+

1
4

By integration:
3
4

ln x + ln y − 1
2

y − 1
4
= C , C=constant

The trajectories are closed curves around the
critical point.

The critical point is a center and is stable.
The evolution of the predator-prey system is
cyclic.
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Study of general Lotka-Volterra equations

dx
dt

= x(a− αy) � F (x , y)

dy
dt

= y(−c + γx) � G(x , y)

The critical points are (0, 0) and (c/γ, a/α).

The system is almost linear near each of its critical points.

Case of (0, 0): Extinction of both species.

The approximating linear system is

d
dt

(
x
y

)
=

(
a 0
0 −c

)(
x
y

)
Eigenvalues are λ1 = a, λ2 = −c.
So (0, 0) is a saddle point (unstable) for both the linear and the nonlinear systems.
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Case of (c/γ, a/α): survival of both species.

The approximating linear system is

d
dt

(
u
w

)
=

(
0 −αc/γ

γa/α 0

)(
u
w

)
with u = x − c/γ and w = y − a/α.

The eigenvalues are λ1 = i
√

ac and λ2 = −i
√

ac.
So (c/γ, a/α) is a stable center for the linear system.

To determine the trajectories of the linear approximation:

dw
du

=
dw/dt
du/dt

= − (γa/α)u
(αc/γ)w

,

which can be rewritten as:
γ2au

dw
du

= −α2cw

. Thus:
γ2au2 + α2cw2 = k , k = constant ≥ 0 .

The trajectoires are concentric ellipses centered at the critical point.
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For the nonlinear system, one can proceed as in the example:

We know that:

dx
dt

= x(a− αy) � F (x , y)

dy
dt

= y(−c + γx) � G(x , y)

So
dy
dx

=
dy/dt
dx/dt

=
(−c + γx)

x
y

(a− αy)
which is a separable differential equation.

By integration one gets the implicit solution

a ln y − αy + c ln x − γx = C

where C is a constant.

The graph of a trajectory corresponding to each fixed value of C is a closed curve
surrounding the critical point (c/γ, a/α). This critical point is a center.

The predator-prey system presents a cyclic variation.
.
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