
Section 8.2: Accuracy of numerical methods

Main Topics:

Accuracy of Euler’s method,

Error terms

Taylor expansions
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Recall Euler’s method for the initial value problem

y ′(t) = f (t , y) with initial condition y(t0) = y0

Goal: to approximate the solution y = φ(t) by a piecewise linear function on some
interval [a, b], where a = t0.

Tools: the given function f (t , y) and the given initial condition y(t0) = y0.

Grid: choose mesh points

a = t0 < t1 < t2 < · · · < tN = b

and split the interval [a, b] as

[a, b] = [a = t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tN−1, tN = b]

To simplify, all intervals will be supposed to have equal length h.

Euler’s algorithm: for n = 1, 2, · · · ,N, the approximation yn of φ(tn) is recursevely
defined, according to

tn+1 = tn + h

yn+1 = yn + hf (tn, yn)
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Example: y ′(t) = 1− t + 4y

y(0) = 1

So: f (t , y) = 1− t + 4y , t0 = 0 and y0 = 1.

Take [a, b] = [t0, b] = [0, 2] and compare Euler’s approximations for different choices
of the step size h with the exact solution

y = φ(t) =
1
4

t − 3
16

+
19
16

e4t .

Accurate if h = 0.001, but... 2000 steps to move from t = 0 to t = 2.
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Errors in numerical approximations
Several sources of errors (step size, rounding off, ...)
So several types of errors have to be considered.

Set:
φ(tn) = exact value of solution at time tn
yn = approximation of solution at time tn by Euler’s algorithm
Yn = rounded-off value for yn (finite number of digits)

Local truncation error: en

It is the difference between the exact solution and its numerical approximation at the
single step tn assuming that all steps from 1 to n − 1 are correct.
So it is equal to φ(tn)− yn if we assume that φ(t1) = y1 ,..., φ(tn−1) = yn−1.

Global truncation error: En = φ(tn)− yn (without any assumption on the previous
steps)
It is the cumulative effect of the local truncation errors at each step, up to the n-th step.

Round-off error: Rn = yn − Yn

Result of rounding-off of the correct value yn due to computer limitations.

Total error at the step tn: φ(tn)− Yn

Bound for the total error at tn:

|φ(tn)− Yn| = |(φ(tn)− yn) + (yn − Yn)| ≤ |φ(tn)− yn|+ |yn − Yn| ≤ |En|+ |Rn|
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Bound for the total error at tn:

Absolute value of total error at tn = |φ(tn)− Yn| ≤ |En|+ |Rn|

So:

estimating |En| and |Rn| ⇒ estimating the accuracy of Euler’s method.

the round-off error Rn is hard to estimate, as more random in nature (it depends
on the type of computer one uses).

the global truncation error En coincide with the local truncation error en if all
previous steps are exact.

This is what we do in the following.
More precisely: Suppose that y1 = φ(t1), . . . , yn = φ(tn). Then we estimate

|En+1| = |en+1| = |φ(tn+1)− yn+1|
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Estimation errors by Taylor expansions

Taylor expansion of φ about tn:

φ(tn + h) = φ(tn) + φ′(tn)h +
1
2
φ′′(tn)h2

where tn is some point in the interval (tn, tn + h).

Recall Euler’s approximation

yn+1 = yn + hf (tn, yn)

Substracting both equations, we get:

φ(tn+1)− yn+1 = (φ(tn)− yn) + h(f (tn, φ(tn))− f (tn, yn)) +
1
2
φ′′(tn)h2

We now apply this formula to the true solution, i.e. take yn = φ(tn), and get:

en+1 =
1
2
φ′′(tn)h2

So, the local truncation error is proportional to the square h2 of the step size.
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We found: en+1 = 1
2φ
′′(tn)h2

Problem: how to compute φ′′(tn) if we do not know φ(t)?

Recall that φ′(t) = f (t , φ(t)).

By the chain rule, we see that:

φ′′(t) = ft(t , φ(t)) + fy (t , φ(t))φ′(t)

= ft(t , φ(t)) + fy (t , φ(t))f (t , φ(t))

But there still the issue of tn.

One option is to consider the maximum possible value M of | φ′′(t) | (i.e. of the
right-hand side of the above equation, which we can compute) on the full interval [a, b].
Then one has

| en |≤
1
2

Mh2

Conversely: if we want the absolute value of the local truncation error to be no
greater than some fixed value ε, we have to choose a step size h such that:

h ≤
√

2ε/M
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Example:
Back to the example

dy
dt

= 1− t + 4y with initial condition y(0) = 1

The exact solution φ(t) =
1
16

(4t − 3 + 19e4t) gives us the best estimate for φ′′.

We have φ′′(t) = 19e4t and hence

en+1 =
19e4tn h2

2
for some tn ∈ (tn, tn + h)

Suppose step size is h = 0.05.
The error in first step is

e1 = φ(t1)− y1 =
19e4t0 0.0025

2
for some 0 < t0 < 0.05

Now since e4t0 < e0.2 we get that

e1 ≤
19e0.20.0025

2
' 0.02901

Note also that e4t0 > 1, and thus

e1 > 19× 0.0025/2 = 0.02375

In other words, we have bounded the local error

0.02375 < e1 ≤ 0.02901

8 / 9



In other words, we have bounded the local error

0.02375 < e1 ≤ 0.02901

Note that the actual error is 0.02542.

So our bounds are not too bad!

We can proceed similarly for the next steps t2, t3, · · · .
We find that the error becomes progressively worse with increasing t .
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