Math 2552 - Differential Equations

Welcome!

Lectures: Mon \& Wed, 12:35-1:55 pm, Yellow Room
Recitations: Tue \& Thu, 2:30-3:30 pm, Yellow Room
Please note: Lecture on Fri, Aug 23, 9:30-11:00, Pink Room

Instructor

Angela Pasquale

Teaching Assistant

Sofiane Karrakchou

Email

angela.pasquale@univ.lorraine.fr angela.pasquale@georgiatech-metz.fr

Email
sofiane.karrakchou@gatech.edu

Office Hours \& Location
Mon \& Wed, 2-3 PM, or by appointment. Office: IL 005

Office Hours \& Location
Please see with the TA

Course Description

Math 2552 is an introduction to differential equations, with a focus on methods for solving some elementary differential equations and on real-life applications.
Practical Information
There will be five quizzes ($15-20$ minutes), two midterms (50 minutes), and a comprehensive final exam (2 hours 50 minutes).
Homework: exercises from the textbook. It will not be collected nor graded.
Course Text: Differential Equations: An Introduction to Modern Methods \& Applications, by James R. Brannan and William E. Boyce (3rd edition), John Wiley and Sons, Inc.

Course Website:

http://www.iecl.univ-lorraine.fr/~Angela.Pasquale/courses/2019/Math2552/Fall19.html

The rate of change of a differentiable function $y=f(t)$

The average rate of change of y with respect to t over the interval $\left[t_{1}, t_{2}\right]$ is

$$
\frac{\Delta y}{\Delta t}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

It is the slope of the secant line to the graph of f thorugh P and Q.

average rate of change $=$ slope of the secant line

By taking the average rate of change over smaller and smaller intervals
(i.e. by letting $t_{2} \rightarrow t_{1}$) the secant line becomes the tangent line.

We obtain the (instantaneous) rate of change of \boldsymbol{y} with respect to t at t_{1}

It is the slope of the secant line to the graph of f at P.

The rate of change of a differentiable function $y=f(t)$

The average rate of change of y with respect to t over the interval $\left[t_{1}, t_{2}\right]$ is

$$
\frac{\Delta y}{\Delta t}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

It is the slope of the secant line to the graph of f thorugh P and Q.

By taking the average rate of change over smaller and smaller intervals (i.e. by letting $t_{2} \rightarrow t_{1}$) the secant line becomes the tangent line.

We obtain the (instantaneous) rate of change of y with respect to t at t_{1} :

$$
\frac{d y}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}=\lim _{t_{2} \rightarrow t_{1}} \frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}=f^{\prime}\left(t_{1}\right)
$$

It is the slope of the secant line to the graph of f at P.

$$
\text { rate of change at } t_{1}=\text { slope of the tangent at } P=f^{\prime}\left(t_{1}\right)
$$

$$
\frac{d u}{d t}=-2(u-3) \quad k=2, T_{0}=3
$$

