Section 1.1: Mathematical models and solutions

Main Topics:

- Mathematical models
- Newton's Law of cooling
- Analytic methods
- Initial Value Problems (IVP)

Example: Newton's Law of Cooling

Suppose a system under observation is an object at temperature $u(t)$, at time t, and is located in an environment with constant ambient temperature T.

Example: Newton's Law of Cooling

Suppose a system under observation is an object at temperature $u(t)$, at time t, and is located in an environment with constant ambient temperature T.

Newton's Law of Cooling:

The rate of change of the temperature of an object is negatively proportional to the difference between $u(t)$ and T.

$$
\begin{equation*}
\frac{d u}{d t}=-k(u-T) \quad \text { or } \quad u^{\prime}=-k(u-T) \tag{1}
\end{equation*}
$$

Here, u is an unknown, and k and T are parameters of the system.

Example: Newton's Law of Cooling

Suppose a system under observation is an object at temperature $u(t)$, at time t, and is located in an environment with constant ambient temperature T.

Newton's Law of Cooling:

The rate of change of the temperature of an object is negatively proportional to the difference between $u(t)$ and T.

$$
\begin{equation*}
\frac{d u}{d t}=-k(u-T) \quad \text { or } \quad u^{\prime}=-k(u-T) \tag{1}
\end{equation*}
$$

Here, u is an unknown, and k and T are parameters of the system.
Equation (1) is an example of a differential equation.

Definition

A differential equation (DE for short) is an equation involving a function and its derivatives.

The rate of change of a differentiable function $y=f(t)$

The average rate of change of y with respect to t over the interval $\left[t_{1}, t_{2}\right]$ is

$$
\frac{\Delta y}{\Delta t}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

It is the slope of the secant line to the graph of f thorugh P and Q.
average rate of change = slope of the secant line

The rate of change of a differentiable function $y=f(t)$

The average rate of change of y with respect to t over the interval $\left[t_{1}, t_{2}\right]$ is

$$
\frac{\Delta y}{\Delta t}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

It is the slope of the secant line to the graph of f thorugh P and Q.

> average rate of change = slope of the secant line

By taking the average rate of change over smaller and smaller intervals (i.e. by letting $t_{2} \rightarrow t_{1}$) the secant line becomes the tangent line.

We obtain the (instantaneous) rate of change of y with respect to t at t_{1} :

$$
\frac{d y}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}=\lim _{t_{2} \rightarrow t_{1}} \frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}=f^{\prime}\left(t_{1}\right)
$$

It is the slope of the secant line to the graph of f at P.

$$
\text { rate of change at } t_{1}=\text { slope of the tangent at } P=f^{\prime}\left(t_{1}\right)
$$

The rate of change of a differentiable function $y=f(t)$

The average rate of change of y with respect to t over the interval $\left[t_{1}, t_{2}\right]$ is

$$
\frac{\Delta y}{\Delta t}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

It is the slope of the secant line to the graph of f thorugh P and Q.

> average rate of change = slope of the secant line

By taking the average rate of change over smaller and smaller intervals (i.e. by letting $t_{2} \rightarrow t_{1}$) the secant line becomes the tangent line. We obtain the (instantaneous) rate of change of y with respect to t at t_{1} :

$$
\frac{d y}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}=\lim _{t_{2} \rightarrow t_{1}} \frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}=f^{\prime}\left(t_{1}\right)
$$

It is the slope of the secant line to the graph of f at P. rate of change at $t_{1}=$ slope of the tangent at $P=f^{\prime}\left(t_{1}\right)$

Solution to a DE

Definition

A solution of a DE is a differentiable function that satisfies that DE on some interval.

Solution to a DE

Definition

A solution of a DE is a differentiable function that satisfies that DE on some interval.

To determine whether a function is a solution to a given DE, what can we do?

Solution to a DE

Definition

A solution of a $D E$ is a differentiable function that satisfies that $D E$ on some interval.
To determine whether a function is a solution to a given $D E$, what can we do? Example: Verify that $u(t)=C e^{-k t}+T$, where $C \in \mathbb{R}$, is a solution to the DE

$$
\frac{d u}{d t}=-k(u-T)
$$

Solution to a DE

Definition

A solution of a $D E$ is a differentiable function that satisfies that $D E$ on some interval.

To determine whether a function is a solution to a given DE, what can we do?
Example: Verify that $u(t)=C e^{-k t}+T$, where $C \in \mathbb{R}$, is a solution to the DE

$$
\frac{d u}{d t}=-k(u-T)
$$

Remarks:

- A solution of a DE is a function
- There might be more than one solution. Often the solution is a class of functions.

The solution of the example can be found analytically (method of separation of variables. See Chapter 2).

Example: $\quad \frac{d u}{d t}=-2(u-3) \quad$ (Newton's law of cooling with $k=2$ and $T=3$)

Example: $\quad \frac{d u}{d t}=-2(u-3) \quad$ (Newton's law of cooling with $k=2$ and $T=3$)
General solution: $u(t)=3+C e^{-2 t}$, where $C \in \mathbb{R}$.
For each choice of C we get a solution: $u(0)=3+C$
Its graph is a curve in the (t, u)-plane, called an integral curve of the $D E$.

Long time behavior: $\lim _{t \rightarrow+\infty} u(t)=3$.

Initial Value Problems (IVP)

Example:

Determine the solution $u(t)$ of the DE

$$
\frac{d u}{d t}=-2(u-3)
$$

that satisfies the initial condition $u(0)=1$.
This is an example of initial value problem.

Initial Value Problems (IVP)

Example:

Determine the solution $u(t)$ of the DE

$$
\frac{d u}{d t}=-2(u-3)
$$

that satisfies the initial condition $u(0)=1$.
This is an example of initial value problem.
The initial condition $u(0)=1$ singles out a unique solution among the infinetely many solutions $u(t)=3+C e^{-2 t}$, where $C \in \mathbb{R}$.

Indeed

$$
1=u(0)=3+C e^{-2 \cdot 0} \quad \text { yields } \quad C=-2
$$

The solution to the given IVP is $u(t)=3-2 e^{-2 t}$.

Initial Value Problems (IVP)

Example:

Determine the solution $u(t)$ of the DE

$$
\frac{d u}{d t}=-2(u-3)
$$

that satisfies the initial condition $u(0)=1$.
This is an example of initial value problem.
The initial condition $u(0)=1$ singles out a unique solution among the infinetely many solutions $u(t)=3+C e^{-2 t}$, where $C \in \mathbb{R}$.

Indeed

$$
1=u(0)=3+C e^{-2 \cdot 0} \quad \text { yields } \quad C=-2
$$

The solution to the given IVP is $u(t)=3-2 e^{-2 t}$.
The initial condition could be imposed at some other time t.
Example: Determine the solution $u(t)$ of the DE

$$
\frac{d u}{d t}=-2(u-3)
$$

that satisfies the initial condition $u(1)=1$.

Dynamical Systems

Newton's Law is one example of an equation that describes a dynamical system.
A dynamical system is composed of:

- A system: Which means that we are observing a phenomenon which behaves according to a set of laws.
- The phenomenon may be mechanical, biological, social, etc.
- Dynamics: the system evolves in time.

It is our task to predict and characterize (as much as possible) the long-term behavior of the dynamical system and how it changes.
This leads us to the use of derivatives and the geometric methods we explore for the rest of the course.

