
Section 1.1: Mathematical models and solutions

Main Topics:

Mathematical models
Newton’s Law of cooling
Analytic methods
Initial Value Problems (IVP)
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Example: Newton’s Law of Cooling

Suppose a system under observation is an object at temperature u(t), at time t , and is
located in an environment with constant ambient temperature T .

Newton’s Law of Cooling:
The rate of change of the temperature of an object is negatively proportional to the
difference between u(t) and T .

du
dt

= −k(u − T ) or u′ = −k(u − T ) (1)

Here, u is an unknown, and k and T are parameters of the system.

Equation (1) is an example of a differential equation.

Definition
A differential equation (DE for short) is an equation involving a function and its
derivatives.
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The rate of change of a differentiable function y = f (t)
The average rate of change of y with respect to t over the interval [t1, t2] is

∆y
∆t

=
f (t2)− f (t1)

t2 − t1
It is the slope of the secant line to the graph of f thorugh P and Q.

average rate of change = slope of the secant line

By taking the average rate of change over smaller and smaller intervals
(i.e. by letting t2 → t1) the secant line becomes the tangent line.
We obtain the (instantaneous) rate of change of y with respect to t at t1:

dy
dt

= lim
∆t→0

∆y
∆t

= lim
t2→t1

f (t2)− f (t1)

t2 − t1
= f ′(t1)

It is the slope of the secant line to the graph of f at P.

rate of change at t1= slope of the tangent at P=f ′(t1)
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Solution to a DE

Definition
A solution of a DE is a differentiable function that satisfies that DE on some interval.

To determine whether a function is a solution to a given DE, what can we do?

Example: Verify that u(t) = Ce−kt + T , where C ∈ R, is a solution to the DE

du
dt

= −k(u − T )

.

Remarks:

A solution of a DE is a function

There might be more than one solution. Often the solution is a class of functions.

The solution of the example can be found analytically (method of separation of
variables. See Chapter 2).
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Example: du
dt

= −2(u − 3) (Newton’s law of cooling with k = 2 and T = 3)

General solution: u(t) = 3 + Ce−2t , where C ∈ R.

For each choice of C we get a solution: u(0) = 3 + C

Its graph is a curve in the (t , u)-plane, called an integral curve of the DE.

Long time behavior: limt→+∞ u(t) = 3.
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Initial Value Problems (IVP)
Example:
Determine the solution u(t) of the DE

du
dt

= −2(u − 3)

that satisfies the initial condition u(0) = 1.

This is an example of initial value problem.

The initial condition u(0) = 1 singles out a unique solution among the infinetely
many solutions u(t) = 3 + Ce−2t , where C ∈ R.

Indeed
1 = u(0) = 3 + Ce−2·0 yields C = −2 .

The solution to the given IVP is u(t) = 3− 2e−2t .

The initial condition could be imposed at some other time t .
Example: Determine the solution u(t) of the DE

du
dt

= −2(u − 3)

that satisfies the initial condition u(1) = 1.
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Dynamical Systems

Newton’s Law is one example of an equation that describes a dynamical system.

A dynamical system is composed of:

A system: Which means that we are observing a phenomenon which behaves
according to a set of laws.

The phenomenon may be mechanical, biological, social, etc.

Dynamics: the system evolves in time.

It is our task to predict and characterize (as much as possible) the long-term behavior
of the dynamical system and how it changes.
This leads us to the use of derivatives and the geometric methods we explore for the
rest of the course.
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