Section 1.2: Qualitative methods: phase lines and direction fields

Main Topics:

- Mathematical models and direction fields,
- Diagrams

Objectives:

- Determine and classify equilibrium solutions
- Sketch direction fields and phase lines
- Sketch solution curves of autonomous DE's based on a qualitative analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

Direction Fields

- Sometimes we encounter situations where we wish to describe the solutions to a differential equation that we cannot solve.
- When this happens, we might be able to use a qualitative method to characterize the system.

Direction Fields

- Sometimes we encounter situations where we wish to describe the solutions to a differential equation that we cannot solve.
- When this happens, we might be able to use a qualitative method to characterize the system.
- In the next slide, we explore one qualitative method: the direction field, and how we can construct it.

Direction Field Example

Example: recall Newton's Law of Cooling, $\frac{du}{dt} = -k(u - T)$. If T = 1 and k = 2. Then

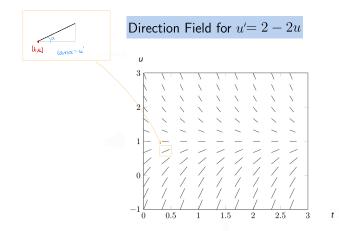
$$\frac{du}{dt}=-k(u-T)=2-2u$$

If
$$u = 0$$
, then $\frac{du}{dt} =$ _____
If $u = 1$, then $\frac{du}{dt} =$ _____
If $u = 2$, then $\frac{du}{dt} =$ _____
If $u = 3$, then $\frac{du}{dt} =$ _____

We use this information to sketch a set of line segments that characterize u'(t) for a particular *k* and *T*.

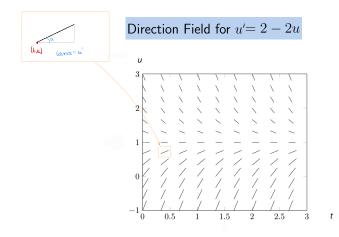
Direction Field for u'(t) = 2 - 2u

We can plot line segments for a set of points (t, u), whose slope are determined by u'(t).



Direction Field for u'(t) = 2 - 2u

We can plot line segments for a set of points (t, u), whose slope are determined by u'(t).



• For what values of *u* is $\frac{du}{dt} = 0$?

Definition

• An autonomous differential equation: is of the form $\frac{dy}{dt} = f(y)$

Definition

- An autonomous differential equation: is of the form $\frac{dy}{dt} = f(y)$
- An equilibrium solution of a DE in y(t) satisfies y = constant.

Definition

- An autonomous differential equation: is of the form $\frac{dy}{dt} = f(y)$
- An equilibrium solution of a DE in y(t) satisfies y = constant.
- Equilibrium solutions are also referred to as equilibrium points or critical points or fixed points or stationary points.

Definition

- An autonomous differential equation: is of the form $\frac{dy}{dt} = f(y)$
- An equilibrium solution of a DE in y(t) satisfies y =constant.
- Equilibrium solutions are also referred to as equilibrium points or critical points or fixed points or stationary points.

An equilibrium solution must satisfy

$$\frac{dy}{dt} =$$

5/9

Definition

- An autonomous differential equation: is of the form $\frac{dy}{dt} = f(y)$
- An equilibrium solution of a DE in y(t) satisfies y = constant.
- Equilibrium solutions are also referred to as equilibrium points or critical points or fixed points or stationary points.

An equilibrium solution must satisfy

$$\frac{dy}{dt} = 0$$

Definition

- An autonomous differential equation: is of the form $\frac{dy}{dt} = f(y)$
- An equilibrium solution of a DE in y(t) satisfies y = constant.
- Equilibrium solutions are also referred to as equilibrium points or critical points or fixed points or stationary points.

An equilibrium solution must satisfy

$$\frac{dy}{dt} = 0$$

i.e.

$$f(y) =$$

Definition

- An autonomous differential equation: is of the form $\frac{dy}{dt} = f(y)$
- An equilibrium solution of a DE in y(t) satisfies y = constant.
- Equilibrium solutions are also referred to as equilibrium points or critical points or fixed points or stationary points.

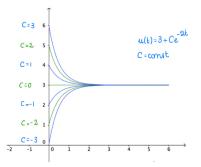
An equilibrium solution must satisfy

$$\frac{dy}{dt} = 0$$

i.e.

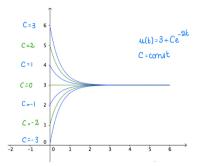
$$f(y)=0.$$

Example: $\frac{du}{dt} = -2(u-3)$ (Newton's law of cooling with k = 2 and T = 3) Some graphs of solutions in the (t, u)-plane (**integral curves**).



Long time behavior: $\lim_{t\to+\infty} u(t) = 3$.

Example: $\frac{du}{dt} = -2(u-3)$ (Newton's law of cooling with k = 2 and T = 3) Some graphs of solutions in the (t, u)-plane (**integral curves**).



Long time behavior: $\lim_{t\to+\infty} u(t) = 3$.

 $\frac{du}{dt} = -2(u-3)$ is an autonomous DE, of the form $\frac{du}{dt} = f(u)$, with f(u) = -2(u-3)The equilibrium solutions of $\frac{du}{dt} = -2(u-3)$ are the solutions to f(u) = 0. Hence, here there is a unique equilibrium solution, namely u = 3.

Phase Portraits and Stability

Example:

Let $f(y) = y(1 - y^2)$.

Consider the differential equation $\frac{dy}{dt} = f(y)$ for $t \ge 0$.

- Determine the equilibrium points.
- Sketch f(y) vs y.
- Use the information from the questions above to sketch the phase line for the DE.
- Sketch a few solution curves, or integral curves for the DE.

Classification of equilibrium points

Phase Line	Sample Solution Curves	Verbal Interpretation	Classification y_1 is $a(n) \dots$
↓ <i>y</i> ₁	$\phi(t) = y_1$	Solution curves passing through points whose y-values close to y_1 on either side tend toward y_1 asymptotically as $t \rightarrow \infty$.	asymptotically stable equilibrium point
y ₁	$\phi(t) = y_1$	Solution curves passing through points whose y-values close to y_1 on either side tend away from y_1 as $t \to \infty$.	unstable equilibrium point
y ₁	$\phi(t) = y_1$	Solution curves tend away from y_1 if they pass through points whose y-values are close to y_1 on one side, but they tend toward y_1	semistable equilibrium point
↓ <i>y</i> ₁	$\phi(t) = y_1$	asymptotically as $t \rightarrow \infty$ if they pass through points whose y-values are close to y_1 on the opposite side.	

J.Brannan & W. Joyce, Differential Equations, Table 1.2.2

э

Example:

For each of the following differential equations $\frac{dy}{dt} = f(y)$:

- Scketch the graph of *f*(*y*) versus *y*.
- Determine the critical (equilibrium) points.
- Draw the phase line and sketch some graphs of solutions.
- Classify each of the critical points.

(1)
$$f(y) = 2 - 2y$$

(2) $f(y) = (y - 1)^2$