Section 1.3: Classification of Differential Equations

Classification:

- provides an organized framework for the subject,
- helps us to choose a method for solving a given DE.

The basic criteria for classification:

- The number of independent variables
- The order of the DE
- The number of unknown functions

- Ordinary Differential Equation (ODE): the unknown function depends on a single independent variable.
- Partial Differential Equation (PDE): the unknown function depends on more than one independent variable.

- Ordinary Differential Equation (ODE): the unknown function depends on a single independent variable.
- Partial Differential Equation (PDE): the unknown function depends on more than one independent variable.

Examples of ODE's

• Newton's Law of Cooling: $\frac{du}{dt} = -k(u - T)$ is an ODE. The unknown function is u(t). The unique independent variable is t.

- Ordinary Differential Equation (ODE): the unknown function depends on a single independent variable.
- Partial Differential Equation (PDE): the unknown function depends on more than one independent variable.

Examples of ODE's

- Newton's Law of Cooling: $\frac{du}{dt} = -k(u-T)$ is an ODE. The unknown function is u(t). The unique independent variable is t.
- $\frac{dy}{dt} = y + t$ or $\frac{d^2y}{dt^2} = 3\cos y$ or $\frac{d^2y}{dt^2} + 2y\frac{dy}{dt} = y$ are ODE's The unknown function is y(t). The unique independent variable is t.

- Ordinary Differential Equation (ODE): the unknown function depends on a single independent variable.
- Partial Differential Equation (PDE): the unknown function depends on more than one independent variable.

Examples of ODE's

- Newton's Law of Cooling: $\frac{du}{dt} = -k(u-T)$ is an ODE. The unknown function is u(t). The unique independent variable is t.
- $\frac{dy}{dt} = y + t$ or $\frac{d^2y}{dt^2} = 3\cos y$ or $\frac{d^2y}{dt^2} + 2y\frac{dy}{dt} = y$ are ODE's The unknown function is y(t). The unique independent variable is t.

Examples of PDE's

- The heat equation $\frac{\partial}{\partial t}u(x,t) = C\frac{\partial^2 u(x,t)}{\partial x^2}$ The unknown function is u(x,t) (the temperature of a metal rod). Two independent variables: t=time, x=position along the rod
- $\frac{\partial}{\partial t}u + u\frac{\partial u}{\partial x} = 0$ is a PDE. The unknown function is u(x,t); two independent variables: t and x.

- Ordinary Differential Equation (ODE): the unknown function depends on a single independent variable.
- Partial Differential Equation (PDE): the unknown function depends on more than one independent variable.

Examples of ODE's

- Newton's Law of Cooling: $\frac{du}{dt} = -k(u-T)$ is an ODE. The unknown function is u(t). The unique independent variable is t.
- $\frac{dy}{dt} = y + t$ or $\frac{d^2y}{dt^2} = 3\cos y$ or $\frac{d^2y}{dt^2} + 2y\frac{dy}{dt} = y$ are ODE's The unknown function is y(t). The unique independent variable is t.

Examples of PDE's

- The heat equation $\frac{\partial}{\partial t}u(x,t) = C\frac{\partial^2 u(x,t)}{\partial x^2}$ The unknown function is u(x,t) (the temperature of a metal rod). Two independent variables: t=time, x=position along the rod
- $\frac{\partial}{\partial t}u + u\frac{\partial u}{\partial x} = 0$ is a PDE. The unknown function is u(x,t); two independent variables: t and x.

This course focuses on ODE's.

Definition

The **order** of an ODE is the highest degree derivative which appears in the equation.

Definition

The **order** of an ODE is the highest degree derivative which appears in the equation.

Examples

(1) Newton's Law of Cooling u' = -k(u - T) has order

Definition

The **order** of an ODE is the highest degree derivative which appears in the equation.

Examples

(1) Newton's Law of Cooling u' = -k(u - T) has order 1.

Definition

The **order** of an ODE is the highest degree derivative which appears in the equation.

- (1) Newton's Law of Cooling u' = -k(u T) has order 1.
- (2) The ODE $y''' + 2e^{t}y'' + yy' = t^{4}$ has order

Definition

The **order** of an ODE is the highest degree derivative which appears in the equation.

- (1) Newton's Law of Cooling u' = -k(u T) has order 1.
- (2) The ODE $y''' + 2e^t y'' + yy' = t^4$ has order 3.

Definition

The order of an ODE is the highest degree derivative which appears in the equation.

- (1) Newton's Law of Cooling u' = -k(u T) has order 1.
- (2) The ODE $y''' + 2e^t y'' + yy' = t^4$ has order 3.
- (3) $y'' + (y')^{10} = 4$ has order

Definition

The order of an ODE is the highest degree derivative which appears in the equation.

Examples

- (1) Newton's Law of Cooling u' = -k(u T) has order 1.
- (2) The ODE $y''' + 2e^t y'' + yy' = t^4$ has order 3.
- (3) $y'' + (y')^{10} = 4$ has order 2.

Remark: This course mostly focuses on ODE's of order 1 and 2.

The number of unknown functions

One ODE:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} = 3$$
 one unknown function $y(t)$

The number of unknown functions

One ODE:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} = 3$$
 one unknown function $y(t)$

A system of two ODE's:

$$\begin{cases} \frac{dx}{dt} = 2x + 3y \\ \frac{dy}{dt} = x - y \end{cases}$$
 two unknown functions $x(t)$ and $y(t)$

The number of unknown functions

One ODE:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} = 3$$
 one unknown function $y(t)$

A system of two ODE's:

$$\begin{cases} \frac{dx}{dt} = 2x + 3y \\ \frac{dy}{dt} = x - y \end{cases}$$
 two unknown functions $x(t)$ and $y(t)$

A system of three ODE's:

$$\begin{cases} \frac{dx_1}{dt} = 2x_1 + 3x_2 + x_3 \\ \frac{dx_2}{dt} = x_1 - x_2 \\ \frac{dx_3}{dt} = -x_1 + x_3 \end{cases}$$
 three unknown functions $x_1(t)$, $x_2(t)$ and $x_3(t)$.

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- y^(k)(t) denotes the k-th derivative of y.

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)}=y', y^{(2)}=y''...$

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**.

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**.

Examples

(1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u-T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called non-linear.

- (1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u-T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.
- (2) $t^3y'' + cos(t)y' = y$

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**.

- (1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u-T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.
- (2) $t^3y'' + cos(t)y' = y$ is linear, of order 2, homogeneous.

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**.

- (1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u-T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.
- (2) $t^3y'' + cos(t)y' = y$ is linear, of order 2, homogeneous.
- (3) yy'' + y' = 0

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**.

- (1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u-T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.
- (2) $t^3y'' + cos(t)y' = y$ is linear, of order 2, homogeneous.
- (3) yy'' + y' = 0 is non-linear, of order 2

Definition

An *n*-th order linear ODE is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**.

- (1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u-T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.
- (2) $t^3y'' + cos(t)y' = y$ is linear, of order 2, homogeneous.
- (3) yy'' + y' = 0 is non-linear, of order 2
- (4) $y + y' = \sin(y + t)$

Definition

An *n***-th order linear ODE** is an ODE of the form:

$$a_0(t)y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \cdots + a_n(t)y(t) = g(t)$$

where

- a₀(t), a₁(t), ..., a_n(t) and g(t) are functions of t which are given (called the coefficients)
- y(t) is the unknown function.
- $y^{(k)}(t)$ denotes the k-th derivative of y. **E.g.** $y^{(1)} = y'$, $y^{(2)} = y''$...

If g(t) = 0 for all t, we say that the linear ODE is **homogeneous**.

An ODE which is not of the above form is called **non-linear**.

- (1) Newton's Law of Cooling $\frac{d}{dt}u(t) = -k(u-T)$ is linear, has order 1, is nonhomogeneous if $T \neq 0$.
- (2) $t^3y'' + cos(t)y' = y$ is linear, of order 2, homogeneous.
- (3) yy'' + y' = 0 is non-linear, of order 2
- (4) $y + y' = \sin(y + t)$ is non-linear, of order 1.



First order linear ODEs

A first order linear ODE is of the form

$$a_0(t)\frac{dy}{dt}+a_1(t)y=g(t)$$

If $a_0(t) = 0$ for all t, there is no DE (no derivative)!

If not, for all t so that $a_0(t) \neq 0$, we can divide both sides of the DE by $a_0(t)$:

$$\frac{dy}{dt} + \frac{a_1(t)}{a_0(t)}y = \frac{g(t)}{a_0(t)}$$

Set

$$p(t) = \frac{a_1(t)}{a_0(t)}$$
 and $h(t) = \frac{g(t)}{a_0(t)}$

Then the above equation can be put in the **standard form** (or normal form)

$$\frac{dy}{dt} + p(t)y = h(t)$$

$$t^3y' + ty = y + t$$

First order linear ODEs

A first order linear ODE is of the form

$$a_0(t)\frac{dy}{dt}+a_1(t)y=g(t)$$

If $a_0(t) = 0$ for all t, there is no DE (no derivative)!

If not, for all t so that $a_0(t) \neq 0$, we can divide both sides of the DE by $a_0(t)$:

$$\frac{dy}{dt} + \frac{a_1(t)}{a_0(t)}y = \frac{g(t)}{a_0(t)}$$

Set

$$p(t) = \frac{a_1(t)}{a_0(t)}$$
 and $h(t) = \frac{g(t)}{a_0(t)}$

Then the above equation can be put in the **standard form** (or normal form)

$$\frac{dy}{dt} + p(t)y = h(t)$$

Example

 $t^3y' + ty = y + t$ is linear, of order 1, nonhomogeneous.

First order linear ODEs

A first order linear ODE is of the form

$$a_0(t)\frac{dy}{dt}+a_1(t)y=g(t)$$

If $a_0(t) = 0$ for all t, there is no DE (no derivative)!

If not, for all t so that $a_0(t) \neq 0$, we can divide both sides of the DE by $a_0(t)$:

$$\frac{dy}{dt} + \frac{a_1(t)}{a_0(t)}y = \frac{g(t)}{a_0(t)}$$

Set

$$p(t) = \frac{a_1(t)}{a_0(t)}$$
 and $h(t) = \frac{g(t)}{a_0(t)}$

Then the above equation can be put in the **standard form** (or normal form)

$$\frac{dy}{dt} + p(t)y = h(t)$$

Example

 $t^3y' + ty = y + t$ is linear, of order 1, nonhomogeneous.

For all $t \neq 0$:

$$y' + \frac{t-1}{t^3} = \frac{1}{t^2}$$
 (standard form)

