Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form
- $x \frac{d y}{d x}+y=0 \quad$ (unknown: $y(x)$)

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form
- $x \frac{d y}{d x}+y=0$ (unknown: $y(x)$) 1st order, linear, homogenous, not in standard form

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form
- $x \frac{d y}{d x}+y=0$ (unknown: $y(x)$) 1st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=y \sin (t)$

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form
- $x \frac{d y}{d x}+y=0$ (unknown: $y(x)$) 1st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=y \sin (t) \quad$ 1st order, linear, homogenous, not in standard form

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form
- $x \frac{d y}{d x}+y=0$ (unknown: $y(x)$) 1st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=y \sin (t) \quad$ 1st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=t \sin (y)$

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form
- $x \frac{d y}{d x}+y=0$ (unknown: $y(x)$) 1st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=y \sin (t) \quad$ 1st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=t \sin (y) \quad 1$ st order, not linear

Section 2.2: Linear DE's: method of integrating factors

Consider the first order linear DE in standard form

$$
\frac{d y}{d t}+p(t) y=h(t)
$$

(unknown: $y(t)$; independent variable t)
If $h(t)=0$, it is homogenous; otherwise it is nonhomogenous.

Examples:

- $\frac{d y}{d t}+2 t^{2} y=\frac{1}{t} \quad$ 1st order, linear, nonhomogenous, in standard form
- $x \frac{d y}{d x}+y=0$ (unknown: $y(x)$) 1st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=y \sin (t) \quad 1$ st order, linear, homogenous, not in standard form
- $\frac{d y}{d t}=t \sin (y) \quad 1$ st order, not linear

Remarks:

- $\frac{d y}{d t}+p(t) y=0$ linear homogenous \Rightarrow separable.
- The methods of integrating factors will allow us to solve any 1 st order linear $D E$.

The method of integrating factors for solving first order

 linear DE in standard form: $\quad \frac{d y}{d t}+p(t) y(t)=h(t)$- Choose an antiderivative $A(t)$ of $p(t)$, i.e. $A^{\prime}(t)=p(t)$. $A(t)$ is found by integrating $p(t)$.
- Set $\mu(t)=e^{A(t)}$: this is the integrating factor.
- Multiply both sides of the DE by $\mu(t)=e^{A(t)}$:

$$
e^{A(t)} \frac{d y}{d t}+e^{A(t)} p(t) y=h(t) e^{A(t)}
$$

- Notice that $e^{A(t)} \frac{d y}{d t}+e^{A(t)} p(t) y=\frac{d}{d t}\left(e^{A(t)} y\right)$. Hence the DE becomes

$$
\frac{d}{d t}\left(e^{A(t)} y\right)=h(t) e^{A(t)}
$$

- Integrate: $e^{A(t)} y=\int h(t) e^{A(t)} d t$ i.e.

$$
y=e^{-A(t)} \int h(t) e^{A(t)} d t
$$

(Remark that the indefinite integral is given up to a additive constant C)

Example 1

(1) Solve $\frac{d y}{d t}=3 y+t+1$.
(2) Solve the IVP (initial value problem):

$$
\frac{d y}{d t}-3 y=t+1, \quad y(0)=4
$$

Example 1

(1) Solve $\frac{d y}{d t}=3 y+t+1$.
(2) Solve the IVP (initial value problem):

$$
\frac{d y}{d t}-3 y=t+1, \quad y(0)=4
$$

Example 2 Consider the first order linear DE

$$
y^{\prime}+2 t y=2 e^{-(t-1)^{2}}
$$

(1) Solve the DE using the method of the integrating factor.
(2) Determine the solution safistying the initial condition $y(0)=1$.
(3) Use the general solution to determine how solutions behave as $t \rightarrow+\infty$.

