Section 2.4: Difference between linear and nonlinear ODE

In this section we are concerned with the two following questions:
Given the initial value problem (IVP):

$$
\begin{aligned}
& \frac{d y}{d t}=f(t, y) \\
& y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

- existence: does the IVP have a solution, and if so, where?
- uniqueness: is the solution unique?

We explore these questions for linear and non-linear cases.

The linear case: an example

$$
\frac{d y}{d t}+\frac{1}{t-1} y=1
$$

The linear case: an example

$\frac{d y}{d t}+\frac{1}{t-1} y=1 \quad$ first order, linear, non-homogenous DE
of the form $\frac{d y}{d t}+p(t) y=h(t)$ with $p(t)=\frac{1}{t-1}$ discontinuous at $t=1$.

- Determine the general solution of this DE.

The linear case: an example

$\frac{d y}{d t}+\frac{1}{t-1} y=1 \quad$ first order, linear, non-homogenous DE
of the form $\frac{d y}{d t}+p(t) y=h(t)$ with $p(t)=\frac{1}{t-1}$ discontinuous at $t=1$.

- Determine the general solution of this DE.

Answer: $y=\frac{t^{2}-2 t+C}{2(t-1)}$, where $C=$ constant. Defined for $t \neq 1$.

The linear case: an example

$\frac{d y}{d t}+\frac{1}{t-1} y=1 \quad$ first order, linear, non-homogenous DE
of the form $\frac{d y}{d t}+p(t) y=h(t)$ with $p(t)=\frac{1}{t-1}$ discontinuous at $t=1$.

- Determine the general solution of this DE.

Answer: $y=\frac{t^{2}-2 t+C}{2(t-1)}$, where $C=$ constant. Defined for $t \neq 1$.

- Solve the IVP:

$$
\frac{d y}{d t}+\frac{1}{t-1} y=1, \quad y\left(t_{0}\right)=y_{0}
$$

(1) if $\left(t_{0}, y_{0}\right)=(2,0)$:
[Recall: A solution is a differentiable function $y=\phi(t)$ satisfying the IVP on some interval $/$ containing $t=2$. Want $/$ as large as possible]

The linear case: an example

$\frac{d y}{d t}+\frac{1}{t-1} y=1 \quad$ first order, linear, non-homogenous DE
of the form $\frac{d y}{d t}+p(t) y=h(t)$ with $p(t)=\frac{1}{t-1}$ discontinuous at $t=1$.

- Determine the general solution of this DE.

Answer: $y=\frac{t^{2}-2 t+C}{2(t-1)}$, where $C=$ constant. Defined for $t \neq 1$.

- Solve the IVP:

$$
\frac{d y}{d t}+\frac{1}{t-1} y=1, \quad y\left(t_{0}\right)=y_{0}
$$

(1) if $\left(t_{0}, y_{0}\right)=(2,0)$:
[Recall: A solution is a differentiable function $y=\phi(t)$ satisfying the IVP on some interval $/$ containing $t=2$. Want $/$ as large as possible]
Answer: $y=\frac{t^{2}-2 t}{2(t-1)}$ for $t \in(1 ;+\infty)$.

The linear case: an example

$\frac{d y}{d t}+\frac{1}{t-1} y=1 \quad$ first order, linear, non-homogenous DE
of the form $\frac{d y}{d t}+p(t) y=h(t)$ with $p(t)=\frac{1}{t-1}$ discontinuous at $t=1$.

- Determine the general solution of this DE.

Answer: $y=\frac{t^{2}-2 t+C}{2(t-1)}$, where $C=$ constant. Defined for $t \neq 1$.

- Solve the IVP:

$$
\frac{d y}{d t}+\frac{1}{t-1} y=1, \quad y\left(t_{0}\right)=y_{0}
$$

(1) if $\left(t_{0}, y_{0}\right)=(2,0)$:
[Recall: A solution is a differentiable function $y=\phi(t)$ satisfying the IVP on some interval $/$ containing $t=2$. Want $/$ as large as possible]
Answer: $y=\frac{t^{2}-2 t}{2(t-1)}$ for $t \in(1 ;+\infty)$.
(2) if $\left(t_{0}, y_{0}\right)=(0,0)$:

The linear case: an example

 $\frac{d y}{d t}+\frac{1}{t-1} y=1 \quad$ first order, linear, non-homogenous DE of the form $\frac{d y}{d t}+p(t) y=h(t)$ with $p(t)=\frac{1}{t-1}$ discontinuous at $t=1$.- Determine the general solution of this DE.

Answer: $y=\frac{t^{2}-2 t+C}{2(t-1)}$, where $C=$ constant. Defined for $t \neq 1$.

- Solve the IVP:

$$
\frac{d y}{d t}+\frac{1}{t-1} y=1, \quad y\left(t_{0}\right)=y_{0}
$$

(1) if $\left(t_{0}, y_{0}\right)=(2,0)$:
[Recall: A solution is a differentiable function $y=\phi(t)$ satisfying the IVP on some interval $/$ containing $t=2$. Want $/$ as large as possible]
Answer: $y=\frac{t^{2}-2 t}{2(t-1)}$ for $t \in(1 ;+\infty)$.
(2) if $\left(t_{0}, y_{0}\right)=(0,0)$:

Answer: $y=\frac{t^{2}-2 t}{2(t-1)}$ for $t \in(-\infty ; 1)$.

Existence and uniqueness of 1st order linear IVP

Theorem (Theorem 2.4.1)

If both $p(t)$ and $g(t)$ are continuous functions of $t \in(\alpha ; \beta)$ and $t_{0} \in(\alpha ; \beta)$, then there is a unique solution $y=\phi(t)$ to the IVP

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

defined for $t \in(\alpha ; \beta)$.
(Here y_{0} is an arbitrarily fixed initial value).

Existence and uniqueness of 1st order linear IVP

Theorem (Theorem 2.4.1)

If both $p(t)$ and $g(t)$ are continuous functions of $t \in(\alpha ; \beta)$ and $t_{0} \in(\alpha ; \beta)$, then there is a unique solution $y=\phi(t)$ to the IVP

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

defined for $t \in(\alpha ; \beta)$.
(Here y_{0} is an arbitrarily fixed initial value).
Idea of the proof. The method of integrating factor provides the explicit solution.

Existence and uniqueness of 1st order linear IVP

Theorem (Theorem 2.4.1)

If both $p(t)$ and $g(t)$ are continuous functions of $t \in(\alpha ; \beta)$ and $t_{0} \in(\alpha ; \beta)$, then there is a unique solution $y=\phi(t)$ to the IVP

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

defined for $t \in(\alpha ; \beta)$.
(Here y_{0} is an arbitrarily fixed initial value).
Idea of the proof. The method of integrating factor provides the explicit solution.
Example: $\left(t^{2}-4\right) y^{\prime}+t y=e^{t}$ with $y(1)=1$
Determine (without solving the DE) an interval in which the solution of the IVP exists.

The non-linear case: an example $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3}$

The non-linear case: an example

 $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3} \quad$ first order, nonlinear DE of the form $\frac{d y}{d t}=f(t, y)$ with $f(t, y)=\frac{3}{2} y^{1 / 3}$ continuous at all (t, y).- Solve of this DE.

The non-linear case: an example

 $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3} \quad$ first order, nonlinear DE of the form $\frac{d y}{d t}=f(t, y)$ with $f(t, y)=\frac{3}{2} y^{1 / 3}$ continuous at all (t, y).- Solve of this DE.

Answer: $y=0$ is a solution.
If $y \neq 0$, then the DE can be solved by separation of variables: $y^{-1 / 3} \frac{d y}{d t}=\frac{3}{2}$

The non-linear case: an example

 $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3} \quad$ first order, nonlinear DE of the form $\frac{d y}{d t}=f(t, y)$ with $f(t, y)=\frac{3}{2} y^{1 / 3}$ continuous at all (t, y).- Solve of this DE.

Answer: $y=0$ is a solution.
If $y \neq 0$, then the DE can be solved by separation of variables: $y^{-1 / 3} \frac{d y}{d t}=\frac{3}{2}$
Get: $y^{2 / 3}=t+C$, i.e. $y^{2}=(t+C)^{3}$, where C constant.

The non-linear case: an example

 $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3} \quad$ first order, nonlinear DE of the form $\frac{d y}{d t}=f(t, y)$ with $f(t, y)=\frac{3}{2} y^{1 / 3}$ continuous at all (t, y).- Solve of this DE.

Answer: $y=0$ is a solution.
If $y \neq 0$, then the DE can be solved by separation of variables: $y^{-1 / 3} \frac{d y}{d t}=\frac{3}{2}$
Get: $y^{2 / 3}=t+C$, i.e. $y^{2}=(t+C)^{3}$, where C constant. If $t+C \geq 0$, then $y= \pm(t+C)^{\frac{3}{2}}$.

The non-linear case: an example

 $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3} \quad$ first order, nonlinear DEof the form $\frac{d y}{d t}=f(t, y)$ with $f(t, y)=\frac{3}{2} y^{1 / 3}$ continuous at all (t, y).

- Solve of this DE.

Answer: $y=0$ is a solution.
If $y \neq 0$, then the DE can be solved by separation of variables: $y^{-1 / 3} \frac{d y}{d t}=\frac{3}{2}$
Get: $y^{2 / 3}=t+C$, i.e. $y^{2}=(t+C)^{3}$, where C constant.
If $t+C \geq 0$, then $y= \pm(t+C)^{\frac{3}{2}}$.

- Solve of the IVP:

$$
\frac{d y}{d t}=\frac{3}{2} y^{1 / 3}, \quad y(0)=0
$$

Answer: If $y(0)=0$, then $C=0$.
Hence, for $t \geq 0$, then $y= \pm t^{3 / 2}$.

The non-linear case: an example

 $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3} \quad$ first order, nonlinear DEof the form $\frac{d y}{d t}=f(t, y)$ with $f(t, y)=\frac{3}{2} y^{1 / 3}$ continuous at all (t, y).

- Solve of this DE.

Answer: $y=0$ is a solution.
If $y \neq 0$, then the DE can be solved by separation of variables: $y^{-1 / 3} \frac{d y}{d t}=\frac{3}{2}$
Get: $y^{2 / 3}=t+C$, i.e. $y^{2}=(t+C)^{3}$, where C constant.
If $t+C \geq 0$, then $y= \pm(t+C)^{\frac{3}{2}}$.

- Solve of the IVP:

$$
\frac{d y}{d t}=\frac{3}{2} y^{1 / 3}, \quad y(0)=0
$$

Answer: If $y(0)=0$, then $C=0$.
Hence, for $t \geq 0$, then $y= \pm t^{3 / 2}$.
Conclusion: This IVP has three different solutions:

- $y=t^{3 / 2}$ for $t \geq 0$,
- $y=-t^{3 / 2}$ for $t \geq 0$,
- $y=0$, the constant function, defined for all t.

The non-linear case: an example

 $\frac{d y}{d t}=\frac{3}{2} y^{1 / 3} \quad$ first order, nonlinear DEof the form $\frac{d y}{d t}=f(t, y)$ with $f(t, y)=\frac{3}{2} y^{1 / 3}$ continuous at all (t, y).

- Solve of this DE.

Answer: $y=0$ is a solution.
If $y \neq 0$, then the DE can be solved by separation of variables: $y^{-1 / 3} \frac{d y}{d t}=\frac{3}{2}$
Get: $y^{2 / 3}=t+C$, i.e. $y^{2}=(t+C)^{3}$, where C constant.
If $t+C \geq 0$, then $y= \pm(t+C)^{\frac{3}{2}}$.

- Solve of the IVP:

$$
\frac{d y}{d t}=\frac{3}{2} y^{1 / 3}, \quad y(0)=0
$$

Answer: If $y(0)=0$, then $C=0$.
Hence, for $t \geq 0$, then $y= \pm t^{3 / 2}$.
Conclusion: This IVP has three different solutions:

- $y=t^{3 / 2}$ for $t \geq 0$,
- $y=-t^{3 / 2}$ for $t \geq 0$,
- $y=0$, the constant function, defined for all t.

Existence and uniqueness of 1st order nonlinear IVP

The previous example shows that the continuity of $f(t, y)$ is not sufficient to guarantee the uniqueness of the solution to an IVP for a nonlinear first-order DE.

Theorem (Theorem 2.4.2)

Let $R=\{(t, y): \alpha<t<\beta, \gamma<y<\delta\}$ be an open rectangle in the ty-plane and let $\left(t_{0}, y_{0}\right) \in R$.
If both f and $\frac{\partial f}{\partial y}$ are continuous in $(t, y) \in R$, then there exists a unique function $y=\phi(t)$ the IVP:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

for t in some interval $\left(t_{0}-h, t_{0}+h\right)$ contained in (α, β)

Existence and uniqueness of 1st order nonlinear IVP

The previous example shows that the continuity of $f(t, y)$ is not sufficient to guarantee the uniqueness of the solution to an IVP for a nonlinear first-order DE.

Theorem (Theorem 2.4.2)

Let $R=\{(t, y): \alpha<t<\beta, \gamma<y<\delta\}$ be an open rectangle in the ty-plane and let $\left(t_{0}, y_{0}\right) \in R$.
If both f and $\frac{\partial f}{\partial y}$ are continuous in $(t, y) \in R$, then there exists a unique function $y=\phi(t)$ the IVP:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

for t in some interval $\left(t_{0}-h, t_{0}+h\right)$ contained in (α, β)

Example:
Does $y^{\prime}=\frac{3}{2} y^{1 / 3}, y(0)=0$ satisfy the conditions of this theorem?

Linear vs non-linear case

The 1st order linear DE $y^{\prime}+p(t) y=g(t)$ has the following properties:
(1) If the p and g are continuous, there is a general solution (containing an arbitrary constant) that represents all solutions of the DE.
(2) The general solution (and hence every particular solution) has an explicit expression.
(3) Points where a solution is discontinuous can be found without solving the DE (they are identified from the coefficients).

Linear vs non-linear case

The 1st order linear DE $y^{\prime}+p(t) y=g(t)$ has the following properties:
(1) If the p and g are continuous, there is a general solution (containing an arbitrary constant) that represents all solutions of the DE.
(2) The general solution (and hence every particular solution) has an explicit expression.
(3) Points where a solution is discontinuous can be found without solving the DE (they are identified from the coefficients).

A nonlinear first order ODE does not necessarily have any of the above properties.

