Section 2.6: Exact differential equations

Example:

$$
\underbrace{\left(2 x y^{2}+2 y\right)}_{M(x, y)}+\underbrace{\left(2 x^{2} y+2 x\right)}_{N(x, y)} \frac{d y}{d x}=0
$$

Section 2.6: Exact differential equations

Example:

$$
\underbrace{\left(2 x y^{2}+2 y\right)}_{M(x, y)}+\underbrace{\left(2 x^{2} y+2 x\right)}_{N(x, y)} \frac{d y}{d x}=0
$$

Suppose we know a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M(x, y), \quad \frac{\partial \psi}{\partial y}=N(x, y)
$$

Here: $\psi(x, y)=x^{2} y^{2}+2 x y$.

Section 2.6: Exact differential equations

Example:

$$
\underbrace{\left(2 x y^{2}+2 y\right)}_{M(x, y)}+\underbrace{\left(2 x^{2} y+2 x\right)}_{N(x, y)} \frac{d y}{d x}=0
$$

Suppose we know a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M(x, y), \quad \frac{\partial \psi}{\partial y}=N(x, y)
$$

Here: $\psi(x, y)=x^{2} y^{2}+2 x y$.
Then

$$
M(x, y)+N(x, y) \frac{d y}{d x}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=
$$

Section 2.6: Exact differential equations

Example:

$$
\underbrace{\left(2 x y^{2}+2 y\right)}_{M(x, y)}+\underbrace{\left(2 x^{2} y+2 x\right)}_{N(x, y)} \frac{d y}{d x}=0
$$

Suppose we know a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M(x, y), \quad \frac{\partial \psi}{\partial y}=N(x, y)
$$

Here: $\psi(x, y)=x^{2} y^{2}+2 x y$.
Then

$$
M(x, y)+N(x, y) \frac{d y}{d x}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=\frac{d}{d x} \psi(x, y(x))
$$

Section 2.6: Exact differential equations

Example:

$$
\underbrace{\left(2 x y^{2}+2 y\right)}_{M(x, y)}+\underbrace{\left(2 x^{2} y+2 x\right)}_{N(x, y)} \frac{d y}{d x}=0
$$

Suppose we know a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M(x, y), \quad \frac{\partial \psi}{\partial y}=N(x, y)
$$

Here: $\psi(x, y)=x^{2} y^{2}+2 x y$.
Then

$$
M(x, y)+N(x, y) \frac{d y}{d x}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=\frac{d}{d x} \psi(x, y(x))
$$

i.e. our initial DE is equivalent to: $\frac{d}{d x} \psi(x, y(x))=0$,

Section 2.6: Exact differential equations

Example:

$$
\underbrace{\left(2 x y^{2}+2 y\right)}_{M(x, y)}+\underbrace{\left(2 x^{2} y+2 x\right)}_{N(x, y)} \frac{d y}{d x}=0
$$

Suppose we know a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M(x, y), \quad \frac{\partial \psi}{\partial y}=N(x, y)
$$

Here: $\psi(x, y)=x^{2} y^{2}+2 x y$.
Then

$$
M(x, y)+N(x, y) \frac{d y}{d x}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=\frac{d}{d x} \psi(x, y(x))
$$

i.e. our initial DE is equivalent to: $\frac{d}{d x} \psi(x, y(x))=0$,
which has solution $\psi(x, y(x))=C$, where C is a constant.

Section 2.6: Exact differential equations

Example:

$$
\underbrace{\left(2 x y^{2}+2 y\right)}_{M(x, y)}+\underbrace{\left(2 x^{2} y+2 x\right)}_{N(x, y)} \frac{d y}{d x}=0
$$

Suppose we know a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}=M(x, y), \quad \frac{\partial \psi}{\partial y}=N(x, y)
$$

Here: $\psi(x, y)=x^{2} y^{2}+2 x y$.
Then

$$
M(x, y)+N(x, y) \frac{d y}{d x}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=\frac{d}{d x} \psi(x, y(x))
$$

i.e. our initial DE is equivalent to: $\frac{d}{d x} \psi(x, y(x))=0$,
which has solution $\psi(x, y(x))=C$, where C is a constant.
Thus: the solution to the original DE is: $x^{2} y^{2}+2 x y=C$, where C is a constant.

Recall that $\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}$. If $\frac{\partial \psi}{\partial x}=M$ and $\frac{\partial \psi}{\partial y}=N$, then

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}=\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial N}{\partial x}
$$

Recall that $\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}$. If $\frac{\partial \psi}{\partial x}=M$ and $\frac{\partial \psi}{\partial y}=N$, then

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}=\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial N}{\partial x}
$$

Important: this condition suffices to guarantee that ψ exists.

Recall that $\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}$. If $\frac{\partial \psi}{\partial x}=M$ and $\frac{\partial \psi}{\partial y}=N$, then

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}=\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial N}{\partial x} .
$$

Important: this condition suffices to guarantee that ψ exists.

Definition

The first order DE: $M(x, y)+N(x, y) \frac{d y}{d x}=0$ is exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

This is equivalent to the fact that there is a function $\psi(x, y)$ such that

$$
\frac{\partial \psi(x, y)}{\partial x}=M(x, y), \quad \frac{\partial \psi(x, y)}{\partial y}=N(x, y)
$$

Recall that $\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}$. If $\frac{\partial \psi}{\partial x}=M$ and $\frac{\partial \psi}{\partial y}=N$, then

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}=\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial N}{\partial x}
$$

Important: this condition suffices to guarantee that ψ exists.

Definition

The first order DE: $M(x, y)+N(x, y) \frac{d y}{d x}=0$ is exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

This is equivalent to the fact that there is a function $\psi(x, y)$ such that

$$
\frac{\partial \psi(x, y)}{\partial x}=M(x, y), \quad \frac{\partial \psi(x, y)}{\partial y}=N(x, y)
$$

Example: Is $\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) \frac{d y}{d x}=0$ exact?

Recall that $\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}$. If $\frac{\partial \psi}{\partial x}=M$ and $\frac{\partial \psi}{\partial y}=N$, then

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}=\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial N}{\partial x} .
$$

Important: this condition suffices to guarantee that ψ exists.

Definition

The first order DE: $M(x, y)+N(x, y) \frac{d y}{d x}=0$ is exact if

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

This is equivalent to the fact that there is a function $\psi(x, y)$ such that

$$
\frac{\partial \psi(x, y)}{\partial x}=M(x, y), \quad \frac{\partial \psi(x, y)}{\partial y}=N(x, y)
$$

Example: Is $\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) \frac{d y}{d x}=0$ exact?
How to find ψ ?

To solve the first order exact DE $\quad M(x, y)+N(x, y) \frac{d y}{d x}=0$

- Determine $\psi(x, y)$ so that $\frac{\partial \psi}{\partial x}=M$ and $\frac{\partial \psi}{\partial y}=N$:
(a) $\frac{\partial \psi}{\partial x}=M$ means (by integrating with respect to x):

$$
\psi(x, y)=\int M(x, y) d x+h(y)
$$

(b) differentiate this formula for $\psi(x, y)$ with respect to y and use that $\frac{\partial \psi}{\partial y}=N(x, y)$:

$$
\frac{\partial \psi}{\partial y}=\frac{\partial}{\partial y} \int M(x, y) d x+h^{\prime}(y)
$$

i.e.

$$
h^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x
$$

Rem: the RHS is in fact a function of y only because the DE is exact, i.e. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(c) Integrate to get $h(y)$.

- The solution of the DE is $\psi(x, y(x))=C$, where C is the constant of integration.

Example: Solve the IVP: $y-2 x+(x-y) y^{\prime}=0, \quad y(0)=0$.

