Example:

$$\underbrace{(2xy^2+2y)}_{M(x,y)} + \underbrace{(2x^2y+2x)}_{N(x,y)} \frac{dy}{dx} = 0$$

Example:

$$\underbrace{(2xy^2+2y)}_{M(x,y)}+\underbrace{(2x^2y+2x)}_{N(x,y)}\frac{dy}{dx}=0$$

Suppose we know a function $\psi(x, y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y), \quad \frac{\partial \psi}{\partial y} = N(x, y)$$

Here: $\psi(x, y) = x^2 y^2 + 2xy$.

Example:

$$\underbrace{(2xy^2+2y)}_{M(x,y)}+\underbrace{(2x^2y+2x)}_{N(x,y)}\frac{dy}{dx}=0$$

Suppose we know a function $\psi(x, y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y), \quad \frac{\partial \psi}{\partial y} = N(x, y)$$

Here: $\psi(x, y) = x^2 y^2 + 2xy$.

Then

$$M(x,y) + N(x,y)\frac{dy}{dx} = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y}\frac{dy}{dx} =$$

Example:

$$\underbrace{(2xy^2+2y)}_{M(x,y)}+\underbrace{(2x^2y+2x)}_{N(x,y)}\frac{dy}{dx}=0$$

Suppose we know a function $\psi(x, y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y), \quad \frac{\partial \psi}{\partial y} = N(x, y)$$

Here: $\psi(x, y) = x^2 y^2 + 2xy$.

Then

$$M(x,y) + N(x,y)\frac{dy}{dx} = \frac{\partial\psi}{\partial x} + \frac{\partial\psi}{\partial y}\frac{dy}{dx} = \frac{d}{dx}\psi(x,y(x))$$

Example:

$$\underbrace{(2xy^2+2y)}_{M(x,y)}+\underbrace{(2x^2y+2x)}_{N(x,y)}\frac{dy}{dx}=0$$

Suppose we know a function $\psi(x, y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y), \quad \frac{\partial \psi}{\partial y} = N(x, y)$$

Here: $\psi(x, y) = x^2 y^2 + 2xy$.

Then

$$M(x,y) + N(x,y)\frac{dy}{dx} = \frac{\partial\psi}{\partial x} + \frac{\partial\psi}{\partial y}\frac{dy}{dx} = \frac{d}{dx}\psi(x,y(x))$$

i.e. our initial DE is equivalent to: $\frac{d}{dx}\psi(x, y(x)) = 0$,

Example:

$$\underbrace{(2xy^2+2y)}_{M(x,y)}+\underbrace{(2x^2y+2x)}_{N(x,y)}\frac{dy}{dx}=0$$

Suppose we know a function $\psi(x, y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y), \quad \frac{\partial \psi}{\partial y} = N(x, y)$$

Here: $\psi(x, y) = x^2 y^2 + 2xy$.

Then

$$M(x,y) + N(x,y)\frac{dy}{dx} = \frac{\partial\psi}{\partial x} + \frac{\partial\psi}{\partial y}\frac{dy}{dx} = \frac{d}{dx}\psi(x,y(x))$$

i.e. our initial DE is equivalent to: $\frac{d}{dx}\psi(x, y(x)) = 0$, which has solution $\psi(x, y(x)) = C$, where *C* is a constant.

Example:

$$\underbrace{(2xy^2+2y)}_{M(x,y)}+\underbrace{(2x^2y+2x)}_{N(x,y)}\frac{dy}{dx}=0$$

Suppose we know a function $\psi(x, y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y), \quad \frac{\partial \psi}{\partial y} = N(x, y)$$

Here: $\psi(x, y) = x^2 y^2 + 2xy$.

Then

$$M(x,y) + N(x,y)\frac{dy}{dx} = \frac{\partial\psi}{\partial x} + \frac{\partial\psi}{\partial y}\frac{dy}{dx} = \frac{d}{dx}\psi(x,y(x))$$

i.e. our initial DE is equivalent to: $\frac{d}{dx}\psi(x, y(x)) = 0$, which has solution $\psi(x, y(x)) = C$, where *C* is a constant.

Thus: the solution to the original DE is: $x^2y^2 + 2xy = C$, where C is a constant.

Recall that
$$\frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial^2 \psi}{\partial y \partial x}$$
. If $\frac{\partial \psi}{\partial x} = M$ and $\frac{\partial \psi}{\partial y} = N$, then
 $\frac{\partial M}{\partial y} = \frac{\partial^2 \psi}{\partial y \partial x} = \frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial N}{\partial x}$.

Recall that
$$\frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial^2 \psi}{\partial y \partial x}$$
. If $\frac{\partial \psi}{\partial x} = M$ and $\frac{\partial \psi}{\partial y} = N$, then
 $\frac{\partial M}{\partial y} = \frac{\partial^2 \psi}{\partial y \partial x} = \frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial N}{\partial x}$.

Recall that
$$\frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial^2 \psi}{\partial y \partial x}$$
. If $\frac{\partial \psi}{\partial x} = M$ and $\frac{\partial \psi}{\partial y} = N$, then
 $\frac{\partial M}{\partial y} = \frac{\partial^2 \psi}{\partial y \partial x} = \frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial N}{\partial x}$.

Definition

The first order DE: $M(x, y) + N(x, y) \frac{dy}{dx} = 0$ is **exact** if

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

This is equivalent to the fact that there is a function $\psi(x, y)$ such that

$$\frac{\partial \psi(x, y)}{\partial x} = M(x, y), \quad \frac{\partial \psi(x, y)}{\partial y} = N(x, y)$$

Recall that
$$\frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial^2 \psi}{\partial y \partial x}$$
. If $\frac{\partial \psi}{\partial x} = M$ and $\frac{\partial \psi}{\partial y} = N$, then
 $\frac{\partial M}{\partial y} = \frac{\partial^2 \psi}{\partial y \partial x} = \frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial N}{\partial x}$.

Definition

The first order DE:
$$M(x, y) + N(x, y)\frac{dy}{dx} = 0$$
 is **exact** if

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

This is equivalent to the fact that there is a function $\psi(x, y)$ such that

$$\frac{\partial \psi(x, y)}{\partial x} = M(x, y), \quad \frac{\partial \psi(x, y)}{\partial y} = N(x, y)$$

Example: Is $(2xy^2 + 2y) + (2x^2y + 2x)\frac{dy}{dx} = 0$ exact?

Recall that
$$\frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial^2 \psi}{\partial y \partial x}$$
. If $\frac{\partial \psi}{\partial x} = M$ and $\frac{\partial \psi}{\partial y} = N$, then
 $\frac{\partial M}{\partial y} = \frac{\partial^2 \psi}{\partial y \partial x} = \frac{\partial^2 \psi}{\partial x \partial y} = \frac{\partial N}{\partial x}$.

Definition

The first order DE:
$$M(x, y) + N(x, y)\frac{dy}{dx} = 0$$
 is **exact** if

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

This is equivalent to the fact that there is a function $\psi(x, y)$ such that

$$\frac{\partial \psi(x, y)}{\partial x} = M(x, y), \quad \frac{\partial \psi(x, y)}{\partial y} = N(x, y)$$

Example: Is
$$(2xy^2 + 2y) + (2x^2y + 2x)\frac{dy}{dx} = 0$$
 exact?

How to find ψ ?

To solve the first order exact DE $M(x, y) + N(x, y) \frac{dy}{dx} = 0$

• Determine $\psi(x, y)$ so that $\frac{\partial \psi}{\partial x} = M$ and $\frac{\partial \psi}{\partial y} = N$:

(a) $\frac{\partial \psi}{\partial x} = M$ means (by integrating with respect to *x*):

$$\psi(x,y) = \int M(x,y)\,dx + h(y)$$

(b) differentiate this formula for $\psi(x, y)$ with respect to y and use that $\frac{\partial \psi}{\partial y} = N(x, y)$:

i.e.
$$\frac{\partial \psi}{\partial y} = \frac{\partial}{\partial y} \int M(x, y) \, dx + h'(y)$$
$$h'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) \, dx$$

Rem: the RHS is in fact a function of y only because the DE is exact, i.e. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (c) Integrate to get h(y).

• The **solution** of the DE is $\psi(x, y(x)) = C$, where *C* is the constant of integration. Example: Solve the IVP: y - 2x + (x - y)y' = 0, y(0) = 0.