Chapter 3: Systems of two first order DE

Section 3.1: Systems of two linear algebraic equations

Main topics:

- system of two linear equations
- matrix, determinant, trace and inverse
- solve systems with matrices
- eigenvalues and eigenvectors.

Systems of two linear equations

A system of two linear equations is of the form:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

where

- a_{11} , a_{12} , a_{21} , a_{22} , b_1 , b_2 are fixed real numbers (the **coefficients** of the systems)
- x_1, x_2 are the unknowns.

Systems of two linear equations

A system of two linear equations is of the form:

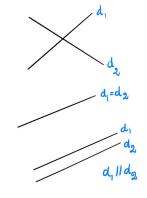
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

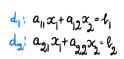
where

- a_{11} , a_{12} , a_{21} , a_{22} , b_1 , b_2 are fixed real numbers (the **coefficients** of the systems)
- \bullet x_1, x_2 are the unknowns.

Such a system either admits

- · a unique solution,
- infinitely many solutions,
- no solution at all.





$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

Definition

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 is the **matrix of coefficients** of the system

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 is column vector of the unknowns $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ is a given column vector.

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
 is a given column vector.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

Definition

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 is the **matrix of coefficients** of the system

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 is column vector of the unknowns $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ is a given column vector.

$$\mathbf{b} = inom{b_1}{b_2}$$
 is a given column vector.

In matrix notation,
$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$
 is $\mathbf{A}\mathbf{x} = \mathbf{b}$ where

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

Definition

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 is the **matrix of coefficients** of the system

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 is column vector of the unknowns $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ is a given column vector.

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
 is a given column vector.

In matrix notation,
$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$
 is $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

Definition

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 is the **matrix of coefficients** of the system

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 is column vector of the unknowns $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ is a given column vector.

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
 is a given column vector.

Example:

In matrix notation,
$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$
 is $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Definition

The system is said to be **homogeneous** if $b_1 = b_2 = 0$.

In matrix notation: $\mathbf{A}\mathbf{x} = \mathbf{0}$ where on the RHS "0" means the zero vector $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Determinant and trace of a 2×2 matrix

Definition

The **determinant** of $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, denoted by $\det(\mathbf{A})$, is the real number def. by

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

The **trace** of \mathbf{A} , denoted by $\operatorname{trace}(\mathbf{A})$, is the real number defined by

$$trace(\mathbf{A}) = a_{11} + a_{22}$$
.

Determinant and trace of a 2×2 matrix

Definition

The **determinant** of $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, denoted by $\det(\mathbf{A})$, is the real number def. by

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

The **trace** of \mathbf{A} , denoted by $\operatorname{trace}(\mathbf{A})$, is the real number defined by

$$trace(\mathbf{A}) = a_{11} + a_{22}$$
.

Determinant and trace of a 2 × 2 matrix

Definition

The **determinant** of $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, denoted by $\det(\mathbf{A})$, is the real number def. by

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

The **trace** of \mathbf{A} , denoted by $\mathrm{trace}(\mathbf{A})$, is the real number defined by

$$trace(\mathbf{A}) = a_{11} + a_{22}$$
.

If
$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
, then $\det(\mathbf{A}) =$

Determinant and trace of a 2 × 2 matrix

Definition

The **determinant** of $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, denoted by $\det(\mathbf{A})$, is the real number def. by

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

The **trace** of \mathbf{A} , denoted by $\operatorname{trace}(\mathbf{A})$, is the real number defined by

$$trace(\mathbf{A}) = a_{11} + a_{22}$$
.

If
$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
, then $\det(\mathbf{A}) = 2 \cdot (-1) - 1 \cdot (-3) = 1$

Determinant and trace of a 2 × 2 matrix

Definition

The **determinant** of $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, denoted by $\det(\mathbf{A})$, is the real number def. by

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

The **trace** of \mathbf{A} , denoted by $\operatorname{trace}(\mathbf{A})$, is the real number defined by

$$trace(\mathbf{A}) = a_{11} + a_{22}$$
.

If
$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
, then $\det(\mathbf{A}) = 2 \cdot (-1) - 1 \cdot (-3) = 1$ and $\operatorname{trace}(\mathbf{A}) = 1$

Determinant and trace of a 2×2 matrix

Definition

The **determinant** of $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, denoted by $\det(\mathbf{A})$, is the real number def. by

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

The trace of A, denoted by trace(A), is the real number defined by

$$trace(\mathbf{A}) = a_{11} + a_{22}$$
.

Example:

If
$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
, then $\det(\mathbf{A}) = 2 \cdot (-1) - 1 \cdot (-3) = 1$ and $\operatorname{trace}(\mathbf{A}) = 2 - 1 = 1$.

Definition

$$I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is the identity matrix.

We have det(I) = 1 and trace(I) = 2. Moreover: AI = IA = A for any 2×2 matrix A_{equation}

Definition

We say that the matrix **A** is **invertible** or **non-singular** if $det(\mathbf{A}) \neq 0$.

[It is noninvertible or singular if $det(\mathbf{A}) = 0$.]

If the matrix $\bf A$ is invertible, then the **inverse** $\bf A^{-1}$ of $\bf A$ is the matrix uniquely defined by the formula:

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

The matrix ${\bf A}$ and its inverse ${\bf A}^{-1}$ are related by the property that:

$$\mathbf{A}\mathbf{A}^{-1}=\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}$$

Definition

We say that the matrix **A** is **invertible** or **non-singular** if $det(\mathbf{A}) \neq 0$.

[It is noninvertible or singular if $det(\mathbf{A}) = 0$.]

If the matrix $\bf A$ is invertible, then the **inverse** $\bf A^{-1}$ of $\bf A$ is the matrix uniquely defined by the formula:

$$\mathbf{A}^{-1} = rac{1}{\det(\mathbf{A})} egin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix}$$

The matrix \mathbf{A} and its inverse \mathbf{A}^{-1} are related by the property that:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

Examples

• The determinant of $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is

Definition

We say that the matrix **A** is **invertible** or **non-singular** if $det(\mathbf{A}) \neq 0$.

[It is noninvertible or singular if $det(\mathbf{A}) = 0$.]

If the matrix $\bf A$ is invertible, then the **inverse** $\bf A^{-1}$ of $\bf A$ is the matrix uniquely defined by the formula:

$$\mathbf{A}^{-1} = rac{1}{\det(\mathbf{A})} egin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix}$$

The matrix $\bf A$ and its inverse $\bf A^{-1}$ are related by the property that:

$$AA^{-1} = A^{-1}A = I$$

Examples

• The determinant of $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is $\det(\mathbf{A}) = -2$. Hence \mathbf{A} is invertible.

The inverse of A is

Definition

We say that the matrix **A** is **invertible** or **non-singular** if $det(\mathbf{A}) \neq 0$.

[It is noninvertible or singular if $det(\mathbf{A}) = 0$.]

If the matrix $\bf A$ is invertible, then the **inverse** $\bf A^{-1}$ of $\bf A$ is the matrix uniquely defined by the formula:

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

The matrix $\bf A$ and its inverse $\bf A^{-1}$ are related by the property that:

$$AA^{-1} = A^{-1}A = I$$

Examples

• The determinant of $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is $\det(\mathbf{A}) = -2$. Hence \mathbf{A} is invertible.

The inverse of **A** is
$$\mathbf{A}^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$
.

Definition

We say that the matrix **A** is **invertible** or **non-singular** if $det(\mathbf{A}) \neq 0$.

[It is noninvertible or singular if $det(\mathbf{A}) = 0$.]

If the matrix $\bf A$ is invertible, then the **inverse** $\bf A^{-1}$ of $\bf A$ is the matrix uniquely defined by the formula:

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

The matrix ${\bf A}$ and its inverse ${\bf A}^{-1}$ are related by the property that:

$$AA^{-1} = A^{-1}A = I$$

Examples

• The determinant of $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is $\det(\mathbf{A}) = -2$. Hence \mathbf{A} is invertible.

The inverse of **A** is
$$\mathbf{A}^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$
.

• The determinant of $\mathbf{B} = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$ is

Definition

We say that the matrix **A** is **invertible** or **non-singular** if $det(\mathbf{A}) \neq 0$.

[It is noninvertible or singular if $det(\mathbf{A}) = 0$.]

If the matrix $\bf A$ is invertible, then the **inverse** $\bf A^{-1}$ of $\bf A$ is the matrix uniquely defined by the formula:

$$\mathbf{A}^{-1} = rac{1}{\det(\mathbf{A})} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

The matrix $\bf A$ and its inverse $\bf A^{-1}$ are related by the property that:

$$\mathbf{A}\mathbf{A}^{-1}=\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}$$

- The determinant of $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is $\det(\mathbf{A}) = -2$. Hence \mathbf{A} is invertible. The inverse of \mathbf{A} is $\mathbf{A}^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$.
- The determinant of $\mathbf{B} = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$ is $\det(\mathbf{B}) = 0$. Hence \mathbf{B} is noninvertible (or singular).

The linear system

$$\begin{cases} a_{11}X_1 + a_{12}X_2 = b_1 \\ a_{21}X_1 + a_{22}X_2 = b_2 \end{cases}$$
 i.e. $\mathbf{A}\mathbf{x} = \mathbf{b}$

admits a unique solution if and only if its associated matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is invertible.

In this case, the solution is given by $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

The linear system

$$\begin{cases} a_{11}X_1 + a_{12}X_2 = b_1 \\ a_{21}X_1 + a_{22}X_2 = b_2 \end{cases}$$
 i.e. $\mathbf{A}\mathbf{x} = \mathbf{b}$

admits a unique solution if and only if its associated matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is invertible.

In this case, the solution is given by $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Indeed:
$$\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{x} = \mathbf{I}\mathbf{x} = (\mathbf{A}^{-1}\mathbf{A})\mathbf{x} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$$
.

The linear system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$
 i.e. $\mathbf{A}\mathbf{x} = \mathbf{b}$

admits a unique solution if and only if its associated matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is invertible.

In this case, the solution is given by $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Indeed:
$$\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{x} = \mathbf{I}\mathbf{x} = (\mathbf{A}^{-1}\mathbf{A})\mathbf{x} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$$
.

Example

Suppose that $\det(\mathbf{A}) \neq \mathbf{0}$: what is the (unique) solution of the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$?

The linear system

$$\begin{cases} a_{11}X_1 + a_{12}X_2 = b_1 \\ a_{21}X_1 + a_{22}X_2 = b_2 \end{cases}$$
 i.e. $\mathbf{A}\mathbf{x} = \mathbf{b}$

admits a unique solution if and only if its associated matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is invertible.

In this case, the solution is given by $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Indeed:
$$\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{x} = \mathbf{I}\mathbf{x} = (\mathbf{A}^{-1}\mathbf{A})\mathbf{x} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$$
.

Example

Suppose that $det(A) \neq 0$: what is the (unique) solution of the homogeneous system Ax = 0?

The unique solution is $\mathbf{x} = \mathbf{0}$.

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix},$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad \det(\mathbf{A}) = 3 \neq 0. \text{ Hence: the system has a unique solution.}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad \det(\mathbf{A}) = 3 \neq 0. \text{ Hence: the system has a unique solution.}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 1 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad \det(\mathbf{A}) = 3 \neq 0. \text{ Hence: the system has a unique solution.}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 1 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix},$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad \det(\mathbf{A}) = 3 \neq 0. \text{ Hence: the system has a unique solution.}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 1 \end{cases}$$

 $\begin{pmatrix} 2x_1 - x_2 = 1 \\ \mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$, $\det(\mathbf{A}) = 0$ and equations multiples of each other. Hence: the system has infinitely many solutions.

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad \det(\mathbf{A}) = 3 \neq 0. \text{ Hence: the system has a unique solution.}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 1 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}, \quad \det(\mathbf{A}) = 0 \quad \text{and equations multiples of each other.}$$
Hence: the system has infinitely many solutions.

$$\begin{cases}
2x_1 - x_2 = 1 \\
2x_1 - x_2 = 0
\end{cases}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad \det(\mathbf{A}) = 3 \neq 0. \text{ Hence: the system has a unique solution.}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 1 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}, \quad \det(\mathbf{A}) = 0 \quad \text{and equations multiples of each other.}$$
Hence: the system has infinitely many solutions.

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix},$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad \det(\mathbf{A}) = 3 \neq 0. \text{ Hence: the system has a unique solution.}$$

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 1 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}, \quad \det(\mathbf{A}) = 0 \quad \text{and equations multiples of each other.}$$
Hence: the system has infinitely many solutions.

$$\begin{cases} 2x_1 - x_2 = 1 \\ 2x_1 - x_2 = 0 \end{cases}$$

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}, \quad \det(\mathbf{A}) = 0 \quad \text{and incompatible equations.}$$
Hence: the system has no solution.

Eigenvalues and eigenvectors

Consider a matrix
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
.

Definition

A (real or complex) number λ is said to be an **eigenvalue** of **A**

if there exists a non-zero vector $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ in \mathbb{C}^2 such that

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$$
 .

In this case, \mathbf{v} is called an **eigenvector** of \mathbf{A} corresponding to the eigenvalue λ . If λ is a real number we say that the eigenvalue is **real**.

If λ is an eigenvalue of **A** and $\mathbf{v}(\neq 0)$ a corresponding eigenvector then one has:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \Longleftrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$$

i.e. $(\mathbf{A} - \lambda I)\mathbf{v} = 0$ has a solution \mathbf{v} which is a nonzero vector

i.e.

If λ is an eigenvalue of ${\bf A}$ and ${\bf v}(\neq 0)$ a corresponding eigenvector then one has:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \Longleftrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$$

i.e.
$$(\mathbf{A} - \lambda I)\mathbf{v} = 0$$
 has a solution \mathbf{v} which is a nonzero vector

i.e.
$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$
.

If λ is an eigenvalue of **A** and $\mathbf{v}(\neq 0)$ a corresponding eigenvector then one has:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \Longleftrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = 0$$

i.e.
$$(\mathbf{A} - \lambda I)\mathbf{v} = 0$$
 has a solution \mathbf{v} which is a nonzero vector

i.e.
$$det(\mathbf{A} - \lambda \mathbf{I}) = 0$$
.

Thus:

The eigenvalues of ${\bf A}$ are the numbers λ which are solutions of the equation

 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$, called the **characteristic equation** of **A**.

If λ is an eigenvalue of **A** and $\mathbf{v}(\neq 0)$ a corresponding eigenvector then one has:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \Longleftrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = 0$$

i.e.
$$(\mathbf{A} - \lambda I)\mathbf{v} = 0$$
 has a solution \mathbf{v} which is a nonzero vector

i.e.
$$det(\mathbf{A} - \lambda \mathbf{I}) = 0$$
.

Thus:

The eigenvalues of ${\bf A}$ are the numbers λ which are solutions of the equation

$$det(\mathbf{A} - \lambda \mathbf{I}) = 0$$
, called the **characteristic equation** of **A**.

Remark: we can always solve this equation because

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix}$$

$$= (a_{11} - \lambda)(a_{22} - \lambda) - a_{21}a_{12}$$

$$= \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{21}a_{12})$$

$$= \lambda^2 - \operatorname{trace}(\mathbf{A})\lambda + \det(\mathbf{A})$$

is a polynomial of degree 2, called characteristic polynomial of A

Conclusion:

The eigenvalues of **A** are the **roots** of the **characteristic polynomial** $det(\mathbf{A} - \lambda \mathbf{I})$ of **A**, that is, the solutions the **characteristic equation** of **A**:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Conclusion:

The eigenvalues of **A** are the **roots** of the **characteristic polynomial** $det(\mathbf{A} - \lambda \mathbf{I})$ of **A**, that is, the solutions the **characteristic equation** of **A**:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

- $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ has two real eigenvalues
- $\mathbf{B} = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$ has two complex conjugate eigenvalues.

Conclusion:

The eigenvalues of **A** are the **roots** of the **characteristic polynomial** $det(\mathbf{A} - \lambda \mathbf{I})$ of **A**, that is, the solutions the **characteristic equation** of **A**:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Examples

- $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ has two real eigenvalues
- $\bullet \ \ \mathbf{B} = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \ \text{has two complex conjugate eigenvalues}.$

Remarks:

- Since A is a real matrix, its characteristic equation is a degree 2 equation with real coefficients (which are 1, -trace(A) and det(A)).
- Consider the equation $\lambda^2 + b\lambda + c = 0$ where $b, c \in \mathbb{R}$. Its solutions λ_1, λ_2 are either both real numbers, or complex conjugate numbers.

How to find eigenvectors?

- If ${\bf v}$ is an eigenvector for ${\bf A}$ for the eigenvalue λ , then ${\bf A}{\bf v}=\lambda{\bf v}$, that is $({\bf A}-\lambda{\bf I}){\bf v}=0$.
- Solve the system of two linear algebraic equations $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = 0$ where the coordinates of \mathbf{v} are the unknowns.

Example
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$