Section 3.2: Systems of two first-order linear DE

Main topics:

- System of two first order linear differential equations
- Initial value problems
- Matrix notation
- Applications to second order differential equations.

A system of two first order linear differential equations has the form:

$$\begin{cases} \frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t) \\ \frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t) \end{cases}$$

where

- *p*₁₁, *p*₁₂, *p*₂₁, *p*₂₂ and *g*₁, *g*₂ are given functions of *t*, defined on a same open interval *I*
- x = x(t), y = y(t) are two unknown functions of t (the state variables).

A system of two first order linear differential equations has the form:

$$\begin{cases} \frac{dx}{dt} = \rho_{11}(t)x + \rho_{12}(t)y + g_1(t) \\ \frac{dy}{dt} = \rho_{21}(t)x + \rho_{22}(t)y + g_2(t) \end{cases}$$

where

- *p*₁₁, *p*₁₂, *p*₂₁, *p*₂₂ and *g*₁, *g*₂ are given functions of *t*, defined on a same open interval *I*
- x = x(t), y = y(t) are two unknown functions of t (the state variables).

Example

$$\begin{cases} \frac{dx}{dt} = -x + 4y\\ \frac{dy}{dt} = \frac{1}{2}x - 2y \end{cases}$$

-1

A system of two first order linear differential equations has the form:

$$\begin{cases} \frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t) \\ \frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t) \end{cases}$$

where

*p*₁₁, *p*₁₂, *p*₂₁, *p*₂₂ and *g*₁, *g*₂ are given functions of *t*, defined on a same open interval *I*

• x = x(t), y = y(t) are two unknown functions of t (the state variables).

Example

$$\begin{cases} \frac{dx}{dt} = -x + 4y & \\ \frac{dy}{dt} = \frac{1}{2}x - 2y & \end{cases} \quad \text{or} \quad \begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t}y - e^{2t-1} \end{cases}$$

A system of two first order linear differential equations has the form:

$$\begin{cases} \frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t) \\ \frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t) \end{cases}$$

where

- *p*₁₁, *p*₁₂, *p*₂₁, *p*₂₂ and *g*₁, *g*₂ are given functions of *t*, defined on a same open interval *I*
- x = x(t), y = y(t) are two unknown functions of t (the state variables).

Example

$$\begin{cases} \frac{dx}{dt} = -x + 4y \\ \frac{dy}{dt} = \frac{1}{2}x - 2y \end{cases} \quad \text{or} \quad \begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t}y - e^{2t-1} \end{cases}$$

Definition

A solution of (S) consists of two differentiable functions x = x(t), y = y(t) satisfying (S) in some interval $I_0 \subseteq I$.

Example Check that $x(t) = -2e^{-3t}$, $y(t) = e^{-3t}$ is a solution of the first system. Which l_0 ?

IVP for systems of two linear DE's

Definition

The system

$$\frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t)$$
$$\frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t)$$

and *two* initial conditions $x(t_0) = x_0$ and $y(t_0) = y_0$ form an **initial value problem (IVP)**.

Example:

$$\begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t-2}y - e^{2t-1} \end{cases}$$
 with initial conditions $x(1) = 0, y(1) = 2.$

IVP for systems of two linear DE's

Definition

The system

$$\frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t)$$
$$\frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t)$$

and *two* initial conditions $x(t_0) = x_0$ and $y(t_0) = y_0$ form an **initial value problem (IVP)**.

Example:

$$\begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t-2}y - e^{2t-1} \end{cases}$$
 with initial conditions $x(1) = 0, y(1) = 2.$

Theorem (Theorem 3.2.1)

Suppose that the functions p_{11} , p_{12} , p_{21} , p_{22} , g_1 , g_2 are continuous on an open interval *I* containing the initial value t_0 . Then the *IVP* of the above definition has a unique solution x = x(t), y = y(t) defined for all *t* in *I*.

IVP for systems of two linear DE's

Definition

The system

$$\frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t)$$
$$\frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t)$$

and *two* initial conditions $x(t_0) = x_0$ and $y(t_0) = y_0$ form an **initial value problem (IVP)**.

Example:

$$\begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t-2}y - e^{2t-1} \end{cases}$$
 with initial conditions $x(1) = 0, y(1) = 2.$

Theorem (Theorem 3.2.1)

Suppose that the functions p_{11} , p_{12} , p_{21} , p_{22} , g_1 , g_2 are continuous on an open interval *I* containing the initial value t_0 . Then the *IVP* of the above definition has a unique solution x = x(t), y = y(t) defined for all *t* in *I*.

What is the largest interval / on which the solution of the IVP of the example exists and is unique?

System notation:

$$\begin{cases} \frac{dx}{dt} = p_{11}(t)x + p_{12}(t)y + g_1(t) \\ \frac{dy}{dt} = p_{21}(t)x + p_{22}(t)y + g_2(t) \end{cases}$$

Matrix notation:

$$\Leftrightarrow \mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$$

Initial conditions:

$$\mathbf{x}(t_0) = \mathbf{x}_0, \mathbf{y}(t_0) = \mathbf{y}_0 \qquad \Leftrightarrow \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

•
$$\mathbf{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 = vector of unknown functions (the state vector).
• $\mathbf{x}'(t) = \frac{d\mathbf{x}}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}$, $\underbrace{\mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t) \end{pmatrix}}_{\mathbf{matrix of coefficients}}$, $\underbrace{\mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix}}_{\mathbf{the nonhomogeneous term, or input or forcing function}$

Definition

The system is called **homogeneous** if g(t) = 0 for all t (i.e. $g_1(t) = g_2(t) = 0$ for all t). Otherwise, it is called **non-homogeneous**

• The matrix notation of

$$\int \frac{dx}{dt} = t^2 y + tx - 2$$
$$\int \frac{dy}{dt} = e^t y + x - t^2$$

is

• The matrix notation of

$$\int \frac{dx}{dt} = t^2 y + tx - 2$$
$$\frac{dy}{dt} = e^t y + x - t^2$$

is $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$, where

$$\mathbf{P}(t) = \begin{pmatrix} t & t^2 \\ 1 & e^t \end{pmatrix} \text{ and } \mathbf{g}(t) = \begin{pmatrix} -2 \\ -t^2 \end{pmatrix}$$

The matrix notation of

$$\begin{cases} \frac{dx}{dt} = t^2 y + tx - 2\\ \frac{dy}{dt} = e^t y + x - t^2 \end{cases}$$

is $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$, where

$$\mathbf{P}(t) = \begin{pmatrix} t & t^2 \\ 1 & e^t \end{pmatrix} \text{ and } \mathbf{g}(t) = \begin{pmatrix} -2 \\ -t^2 \end{pmatrix}$$

• The system notation of the IVP: $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$, where

$$\mathbf{P}(t) = \begin{pmatrix} t & -3t^2 \\ \ln(t) & 1/t \end{pmatrix} \text{ and } \mathbf{g}(t) = \begin{pmatrix} \sin(t) \\ -e^{2t-1} \end{pmatrix}$$
with initial condition $\mathbf{x}(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is

The matrix notation of

$$\begin{cases} \frac{dx}{dt} = t^2y + tx - 2\\ \frac{dy}{dt} = e^ty + x - t^2 \end{cases}$$

is $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$, where

$$\mathbf{P}(t) = \begin{pmatrix} t & t^2 \\ 1 & e^t \end{pmatrix} \text{ and } \mathbf{g}(t) = \begin{pmatrix} -2 \\ -t^2 \end{pmatrix}$$

• The system notation of the IVP: $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$, where

$$\mathbf{P}(t) = \begin{pmatrix} t & -3t^2 \\ \ln(t) & 1/t \end{pmatrix} \text{ and } \mathbf{g}(t) = \begin{pmatrix} \sin(t) \\ -e^{2t-1} \end{pmatrix}$$

with initial condition $\mathbf{x}(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is
$$\begin{cases} \frac{dx}{dt} = tx - 3t^2y + \sin(t) \\ \frac{dy}{dt} = \ln(t)x + \frac{1}{t}y - e^{2t-1} \end{cases}$$

with initial condition x(1) = 1 and y(1) = 0.

<ロ> <四> <四> <四> <四> <四</p>

Important example: constant coefficients

Definition

A system of two linear differential equations $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$ is said to be with constant coefficients if **P** and **g** are constant in *t*, i.e. it is of the form

$$rac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

where:

- A is a 2 × 2 matrix with real coefficients
- **b** is a 2 × 1 column vector with real coefficients.

Example

$$\begin{cases} \frac{dx}{dt} = 2x + y - 2\\ \frac{dy}{dt} = 3x + 4y + 5 \end{cases}$$

has constant coefficient. Its matrix form is

一日

Important example: constant coefficients

Definition

A system of two linear differential equations $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) + \mathbf{g}(t)$ is said to be with constant coefficients if **P** and **g** are constant in *t*, i.e. it is of the form

$$rac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

where:

• A is a 2 × 2 matrix with real coefficients

• **b** is a 2 × 1 column vector with real coefficients.

Example

$$\begin{cases} \frac{dx}{dt} = 2x + y - 2\\ \frac{dy}{dt} = 3x + 4y + 5 \end{cases}$$

has constant coefficient. Its matrix form is $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}$, where

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

< 同 ト < 三 ト < 三 ト

Applications to 2nd order DE

Consider the second order DE:

$$y'' + p(t)y' + q(t)y = g(t)$$

with initial conditions $y(t_0) = y_0$ and $y'(t_0) = y_1$.

- Set $x_1 = y$ and $x_2 = y'$. Then $x'_1 = y' = x_2$ and $x'_2 = y''$.
- The DE can now be rewritten as:

$$\begin{cases} x'_2 + p(t)x_2 + q(t)x_1 = g(t) \\ x'_1 = x_2 \end{cases}$$

i.e.

$$\begin{cases} x'_1 = x_2 \\ x'_2 = -q(t)x_1 - p(t)x_2 + g(t) \end{cases}$$

with initial conditions $x_1(t_0) = y_0$ and $x_2(t_0) = y_1$.

Equivently, as the system of two first order DE's

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ g(t) \end{pmatrix}$$
 with initial conditions $\mathbf{x}(t_0) = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$

Example: Transform the following DE into a system of first order equations:

$$y'' + 3ty' + 5y = t^2 + 4$$

< 日 > < 同 > < 回 > < 回 > < □ > <