Section 3.2: Systems of two first-order linear DE

Main topics:

- System of two first order linear differential equations
- Initial value problems
- Matrix notation
- Applications to second order differential equations.

Definition

A system of two first order linear differential equations has the form:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \tag{S}\\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

where

- $p_{11}, p_{12}, p_{21}, p_{22}$ and g_{1}, g_{2} are given functions of t, defined on a same open interval I
- $x=x(t), y=y(t)$ are two unknown functions of t
(the state variables).

Definition

A system of two first order linear differential equations has the form:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \tag{S}\\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

where

- $p_{11}, p_{12}, p_{21}, p_{22}$ and g_{1}, g_{2} are given functions of t, defined on a same open interval I
- $x=x(t), y=y(t)$ are two unknown functions of t
(the state variables).
Example

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-x+4 y \\
\frac{d y}{d t}=\frac{1}{2} x-2 y
\end{array}\right.
$$

Definition

A system of two first order linear differential equations has the form:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \tag{S}\\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

where

- $p_{11}, p_{12}, p_{21}, p_{22}$ and g_{1}, g_{2} are given functions of t, defined on a same open interval I
- $x=x(t), y=y(t)$ are two unknown functions of $t \quad$ (the state variables).

Example

$$
\left\{\begin{array} { l }
{ \frac { d x } { d t } = - x + 4 y } \\
{ \frac { d y } { d t } = \frac { 1 } { 2 } x - 2 y }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t} y-e^{2 t-1}
\end{array}\right.\right.
$$

Definition

A system of two first order linear differential equations has the form:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \tag{S}\\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

where

- $p_{11}, p_{12}, p_{21}, p_{22}$ and g_{1}, g_{2} are given functions of t, defined on a same open interval I
- $x=x(t), y=y(t)$ are two unknown functions of $t \quad$ (the state variables).

Example

$$
\left\{\begin{array} { l }
{ \frac { d x } { d t } = - x + 4 y } \\
{ \frac { d y } { d t } = \frac { 1 } { 2 } x - 2 y }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t} y-e^{2 t-1}
\end{array}\right.\right.
$$

Definition

A solution of (S) consists of two differentiable functions $x=x(t), y=y(t)$ satisfying (S) in some interval $I_{0} \subseteq I$.

Example Check that $x(t)=-2 e^{-3 t}, y(t)=e^{-3 t}$ is a solution of the first system. Which I_{0} ?

IVP for systems of two linear DE's

Definition

The system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

and two initial conditions $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$ form an initial value problem (IVP).

Example:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t-2} y-e^{2 t-1}
\end{array}\right.
$$

with initial conditions $x(1)=0, y(1)=2$.

IVP for systems of two linear DE's

Definition

The system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

and two initial conditions $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$ form an initial value problem (IVP).
Example:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t-2} y-e^{2 t-1}
\end{array}\right.
$$

with initial conditions $x(1)=0, y(1)=2$.

Theorem (Theorem 3.2.1)

Suppose that the functions $p_{11}, p_{12}, p_{21}, p_{22}, g_{1}, g_{2}$ are continuous on an open interval I containing the initial value t_{0}. Then the IVP of the above definition has a unique solution $x=x(t), y=y(t)$ defined for all t in I.

IVP for systems of two linear DE's

Definition

The system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

and two initial conditions $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$ form an initial value problem (IVP).

Example:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t-2} y-e^{2 t-1}
\end{array}\right.
$$

$$
\text { with initial conditions } x(1)=0, y(1)=2
$$

Theorem (Theorem 3.2.1)

Suppose that the functions $p_{11}, p_{12}, p_{21}, p_{22}, g_{1}, g_{2}$ are continuous on an open interval I containing the initial value t_{0}. Then the IVP of the above definition has a unique solution $x=x(t), y=y(t)$ defined for all t in l.

What is the largest interval / on which the solution of the IVP of the example exists and is unique?

System notation:

Matrix notation:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \\
\frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{array}\right.
$$

$$
\Leftrightarrow \quad \mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t)
$$

Initial conditions:

$x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0} \quad \Leftrightarrow \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$
where:

- $\mathbf{x}(t)=\binom{x(t)}{y(t)} \quad=$ vector of unknown functions (the state vector).
$\mathbf{x}^{\prime}(t)=\frac{d \mathbf{x}}{d t}=\binom{\frac{d x}{d t}}{\frac{d y}{d t}}, \underbrace{\mathbf{P}(t)=\left(\begin{array}{ll}p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t)\end{array}\right)}_{\text {matrix of coefficients }}$,

the nonhomogeneous term, or input or forcing function
- $\mathbf{x}_{0}=\binom{x_{0}}{y_{0}}=$ vector of initial conditions.

Definition

The system is called homogeneous if $\mathbf{g}(t)=0$ for all t (i.e. $g_{1}(t)=g_{2}(t)=0$ for all t). Otherwise, it is called non-homogeneous

Examples

- The matrix notation of

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t^{2} y+t x-2 \\
\frac{d y}{d t}=e^{t} y+x-t^{2}
\end{array}\right.
$$

is

Examples

- The matrix notation of

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t^{2} y+t x-2 \\
\frac{d y}{d t}=e^{t} y+x-t^{2}
\end{array}\right.
$$

is $\quad \mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t), \quad$ where

$$
\mathbf{P}(t)=\left(\begin{array}{ll}
t & t^{2} \\
1 & e^{t}
\end{array}\right) \quad \text { and } \quad \mathbf{g}(t)=\binom{-2}{-t^{2}}
$$

Examples

- The matrix notation of

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t^{2} y+t x-2 \\
\frac{d y}{d t}=e^{t} y+x-t^{2}
\end{array}\right.
$$

is $\quad \mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t), \quad$ where

$$
\mathbf{P}(t)=\left(\begin{array}{ll}
t & t^{2} \\
1 & e^{t}
\end{array}\right) \quad \text { and } \quad \mathbf{g}(t)=\binom{-2}{-t^{2}}
$$

- The system notation of the IVP: $\quad \mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t)$, where

$$
\mathbf{P}(t)=\left(\begin{array}{cc}
t & -3 t^{2} \\
\ln (t) & 1 / t
\end{array}\right) \quad \text { and } \quad \mathbf{g}(t)=\binom{\sin (t)}{-e^{2 t-1}}
$$

with initial condition $\mathbf{x}(1)=\binom{1}{0}$ is

Examples

- The matrix notation of

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t^{2} y+t x-2 \\
\frac{d y}{d t}=e^{t} y+x-t^{2}
\end{array}\right.
$$

is $\quad \mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t), \quad$ where

$$
\mathbf{P}(t)=\left(\begin{array}{ll}
t & t^{2} \\
1 & e^{t}
\end{array}\right) \quad \text { and } \quad \mathbf{g}(t)=\binom{-2}{-t^{2}}
$$

- The system notation of the IVP: $\quad \mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t), \quad$ where

$$
\mathbf{P}(t)=\left(\begin{array}{cc}
t & -3 t^{2} \\
\ln (t) & 1 / t
\end{array}\right) \quad \text { and } \quad \mathbf{g}(t)=\binom{\sin (t)}{-e^{2 t-1}}
$$

with initial condition $\mathbf{x}(1)=\binom{1}{0}$ is

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=t x-3 t^{2} y+\sin (t) \\
\frac{d y}{d t}=\ln (t) x+\frac{1}{t} y-e^{2 t-1}
\end{array}\right.
$$

with initial condition $x(1)=1$ and $y(1)=0$.

Important example: constant coefficients

Definition

A system of two linear differential equations $\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t)$ is said to be with constant coefficients if \mathbf{P} and \mathbf{g} are constant in t, i.e. it is of the form

$$
\frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x}+\mathbf{b}
$$

where:

- \mathbf{A} is a 2×2 matrix with real coefficients
- b is a 2×1 column vector with real coefficients.

Example

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x+y-2 \\
\frac{d y}{d t}=3 x+4 y+5
\end{array}\right.
$$

has constant coefficient. Its matrix form is

Important example: constant coefficients

Definition

A system of two linear differential equations $\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t)$ is said to be with constant coefficients if \mathbf{P} and \mathbf{g} are constant in t, i.e. it is of the form

$$
\frac{d \mathbf{x}}{d t}=\mathbf{A} \mathbf{x}+\mathbf{b}
$$

where:

- \mathbf{A} is a 2×2 matrix with real coefficients
- b is a 2×1 column vector with real coefficients.

Example

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x+y-2 \\
\frac{d y}{d t}=3 x+4 y+5
\end{array}\right.
$$

has constant coefficient. Its matrix form is

$$
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{b}, \quad \text { where }
$$

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\binom{-2}{5}
$$

Applications to 2nd order DE

Consider the second order DE:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

with initial conditions $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{1}$.

- Set $x_{1}=y$ and $x_{2}=y^{\prime}$. Then $x_{1}^{\prime}=y^{\prime}=x_{2}$ and $x_{2}^{\prime}=y^{\prime \prime}$.
- The DE can now be rewritten as:

$$
\left\{\begin{array}{l}
x_{2}^{\prime}+p(t) x_{2}+q(t) x_{1}=g(t) \\
x_{1}^{\prime}=x_{2}
\end{array}\right.
$$

i.e.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}+g(t)
\end{array}\right.
$$

with initial conditions $x_{1}\left(t_{0}\right)=y_{0}$ and $x_{2}\left(t_{0}\right)=y_{1}$.

- Equivently, as the system of two first order DE's

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) \mathbf{x}+\binom{0}{g(t)} \quad \text { with initial conditions } \mathbf{x}\left(t_{0}\right)=\binom{y_{0}}{y_{1}}
$$

Example: Transform the following DE into a system of first order equations:

$$
y^{\prime \prime}+3 t y^{\prime}+5 y=t^{2}+4
$$

