Section 3.3: Homogenous linear systems with
constant coefficients

Main topics:

o Principle of superposition
o Wronskian and linear independence of solutions
The general solution

o Use of eigenvalues and eigenvectors
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The principle of superposition
Theorem (Theorem 3.3.1)

Suppose that x1 = x1(t) and X2 = Xo(t) are solutions of the homog. system x’ = AXx.
Then, for any constants cy, Cz,

x(t) = cix1(t) + c2x2(t)
is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions.
It is known as the principle of superposition.
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The principle of superposition
Theorem (Theorem 3.3.1)

Suppose that x1 = x1(t) and X2 = Xo(t) are solutions of the homog. system x’ = AXx.
Then, for any constants cy, Cz,

X(t) = cixq(t) + c2Xz(t)

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions.
It is known as the principle of superposition.
Example:

. v , -1 4
xi(f) = (1) and xp(t) = e 3’( 1 ) are solutions of x’ = Ax, where A = (1/2 _2)-

D 4 44 2/11




The principle of superposition
Theorem (Theorem 3.3.1)

Suppose that x1 = x1(t) and X2 = Xo(t) are solutions of the homog. system x’ = AXx.
Then, for any constants cy, Cz,

x(t) = cix1(t) + c2x2(t)

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions.
It is known as the principle of superposition.
Example:

4 e (-2 . 1 4
x¢(t) = (1) and xp(t) = e~ 3 ( 1 ) are solutions of X’ = Ax, where A = (1/2 _2).

Hence x(t) = ¢ (‘11) + e (_12> is a solution for any choice of the constants ¢; and c,.

What are the compontents of x(t) ?
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The principle of superposition
Theorem (Theorem 3.3.1)

Suppose that x1 = x1(t) and X2 = Xo(t) are solutions of the homog. system x’ = AXx.
Then, for any constants cy, Cz,

x(t) = cix1(t) + c2x2(t)

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions.
It is known as the principle of superposition.
Example:

4 e (-2 . 1 4
x¢(t) = (1) and xp(t) = e~ 3 ( 1 ) are solutions of X’ = Ax, where A = (1/2 _2).

Hence x(t) = ¢ (‘11) + e (_12) is a solution for any choice of the constants ¢; and c,.

What are the compontents of x(t) ?

Definition

If x(t) = c1x1(t) + cox2(t) for all ¢, then we say that x is a linear combination of x4
and Xxo, and we write it as: X = ¢1X1 + CoXa.
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Wronskian of two solutions

Let x4(t) = (21 Eg) and xa(t) = (Zzgg) be two solutions of the system x’ = Ax.
Definition
The Wronskian of x4 and xz is the function W[x4, x2] defined at ¢ by the determinant

X11 (t) X12(t)

Wixq, x2]() = X1 (1) Xoo(t)




Wronskian of two solutions

Let x4(t) = (X” (t)> and xa(t) = (X'2(t)) be two solutions of the system x’ = Ax.

X21 (t) X22(t)
Definition
The Wronskian of x4 and xz is the function W[x4, x2] defined at ¢ by the determinant
_ ¥ (1) xz(t)
Wixq, x2](t) = xo1(1)  xa2(t)
Example:

The Wronskian of x4 (t) = (;‘) and xo(t) = e~ (—12> is
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Linearly independent solutions
Definition

Let x4 and X, be solutions of the homogenous system of linear DE’s X’ = Ax both
defined on an interval /.

o The solutions of the system are said linearly dependent in an open interval / if
there are constants c1, ¢, (not both zero and independent of t) such that

ciX1(t) + coxo(t) =0 forall t € /.

o Two solutions that are not linearly dependent are called linearly independent.
e Xy and x; are linearly independent if and only if W[x4, X2](t) # 0 for all tin /.

o Two solutions x4 and x» that are linearly independent are said to form a
fundamental set of solutions.

Remark: x4 and xz are linearly dependent if and only if one is a constant multiple of
the other: there is a constant k (independent of t) such that

x1(t) = kxo(t) forallt  or xa(t) = kx4(t) for all ¢.
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Linearly independent solutions
Definition

Let x4 and X, be solutions of the homogenous system of linear DE’s X’ = Ax both
defined on an interval /.

o The solutions of the system are said linearly dependent in an open interval / if
there are constants c1, ¢, (not both zero and independent of t) such that

ciX1(t) + coxo(t) =0 forall t € /.

o Two solutions that are not linearly dependent are called linearly independent.
e Xy and x; are linearly independent if and only if W[x4, X2](t) # 0 for all tin /.

o Two solutions x4 and x» that are linearly independent are said to form a
fundamental set of solutions.

Remark: x4 and xz are linearly dependent if and only if one is a constant multiple of
the other: there is a constant k (independent of t) such that

x1(t) = kxo(t) forallt  or xa(t) = kx4(t) for all ¢.
Example:

4 3t (-2 . -1 4
X1(t) = (1) and xp(t) = e ( 1 ) are solutions of X’ = Ax, where A = (1/2 72).
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Linearly independent solutions
Definition

Let x4 and X, be solutions of the homogenous system of linear DE’s X’ = Ax both
defined on an interval /.

o The solutions of the system are said linearly dependent in an open interval / if
there are constants c1, ¢, (not both zero and independent of t) such that

ciX1(t) + coxo(t) =0 forall t € /.

o Two solutions that are not linearly dependent are called linearly independent.
e Xy and x; are linearly independent if and only if W[x4, X2](t) # 0 for all tin /.

o Two solutions x4 and x» that are linearly independent are said to form a
fundamental set of solutions.

Remark: x4 and xz are linearly dependent if and only if one is a constant multiple of
the other: there is a constant k (independent of t) such that

x1(t) = kxo(t) forallt  or xa(t) = kx4(t) for all ¢.
Example:

4 3t (-2 . -1 4
X1(t) = (1) and xp(t) = e ( 1 ) are solutions of X’ = Ax, where A = (1/2 72).

Are x4 and X linearly independent?
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The general solution of X’ = Ax
Theorem (Theorem 3.3.4)

Suppose x4 and X, for two linearly independent solutions of the system X’ = AXx.
Then any solution of the above system is of the form

X(T) = C1X1(f) + CzXz(T)
for some constants ¢ and c¢,. This is the general solution of the system.
If. moreover, we fix an intitial condition X(ty) = Xo, where Xo = (?g) is a constant

vector, then the constants ¢y and ¢, are uniquely determined and the solution to the
system is unique.

Conclusion:

@ The general solution of a homogenous system of two linear first order DEs is a
linear combination of two linearly independent solutions (=one is not a multiple
of the other)

@ To find the general solution it is enough to find two linearly independent solutions.

@ An initial condition uniquely determines the constants ¢, and ¢, and hence yields
a unique solution to an IVP.




Example

—1 4 . . ’_ — 2
Let A = (1/2 _2>. Consider the IVP:  x’ = AX, x(0) = <1> .

We have shown: x4(t) = G) and xa(t)=e (_12> are linearly independent
solutions.  (So they form a fundamental set of solutions.)

The general solution of the system x’ = Ax is
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Example

LetA:( 2

o 4>. Consider the IVP:  x’ = Ax, x(O):(1).

12 -2

We have shown: x4(t) = G) and xa(t)=e (_12> are linearly independent
solutions.  (So they form a fundamental set of solutions.)

The general solution of the system x’ = Ax is

4 3t (2 4c —2ce” ™
(1) = oxa(t) + oxa(t) = or () + e () = (f0 2201

where ¢, ¢; are arbitrary constants.
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Example

LetA:( 2

o 4). Consider the IVP:  x’ = Ax, x(O):(1).

12 -2

We have shown: x4(t) = G) and xa(t)=e (_12) are linearly independent
solutions.  (So they form a fundamental set of solutions.)

The general solution of the system x’ = Ax is

4 3t (2 4c —2ce” ™
(1) = oxa(t) + oxa(t) = or () + e () = (f0 2201

where ¢, ¢; are arbitrary constants.
We use the initial condition to determine the value of ¢; and ¢;:

2\ (401 — 26730\  [4c - 2¢
<1) =x(0) = < ¢ + 02973'0 - Ci+ C
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Example

LetA:( 4

1
12 -2

>. Consider the IVP:  x’ = AX, x(0) = (f) )

4

We have shown: x4 (t) = <1>

solutions.  (So they form a fundamental set of solutions.)

and Xo(t) = e (_12) are linearly independent

The general solution of the system x’ = Ax is

4 3t (2 4c —2ce” ™
() = o)+ eoxa(t) = or () e (F) = (*0 22,7

where ¢, ¢; are arbitrary constants.

We use the initial condition to determine the value of ¢; and ¢,:
2 4¢, — 2ce7 %0 4ci — 2c
=X = =
<1) (0) < ci + 02973'0 C1 + Co

4ci —2¢, =2 . 2ci —c =1
! 2 , thatis ! 2 . So:icg = gand 0221.
ci+c=1 ci+c =1 3 3
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Example
LetA = ( 4

1
12 -2

>. Consider the IVP:  x’ = AX, x(0) = (f) )

4
1
solutions.  (So they form a fundamental set of solutions.)

We have shown: x4 (t) = and Xo(t) = e (_12) are linearly independent

The general solution of the system x’ = Ax is

4 g (-2 4c) — 2c67 %
X(1) = cixq(t) 4+ cxa2(t) = ¢ <1) + e ( ] ) - ( Cr CQeat ) ,

Ci + e
where ¢, ¢; are arbitrary constants.

We use the initial condition to determine the value of ¢; and ¢;:
2 4¢, — 2ce7 %0 4cy — 20
=X = =
(1) (0) < ci + 02973'0 Ci +C
4ci —2¢, =2 . 2ci —c =1
! 2 , thatis ! 2 . So:icg = 2 and ¢, = 1.
ct+c =1 ci+c=1 3 3

Conclusion: the solution of the IVP is  x(t) = % (4> 4 g (_2> .



How to find solutions of X’ = Ax

The eigenvalues and eigenvectors of the matrix coefficients A allow us to solve the
homogenous system of first order linear DE x’ = Ax.

Theorem
Suppose that v is eigenvector of A with eingenvalue ), i.e. Av = \v.
Then x(t) = e™v is a solution of the system x' = AX.

Example
—1

1. , 1
V= (_1) is an eigenvector of A = (1 3

) for the eigenvalue \ = 2,
i.e. Av = 2v.

Hence x(t) = &* (_11) is a solution of the homogeneous system x’ = Ax.
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How to find solutions of X’ = Ax

The eigenvalues and eigenvectors of the matrix coefficients A allow us to solve the
homogenous system of first order linear DE x’ = Ax.

Theorem
Suppose that v is eigenvector of A with eingenvalue ), i.e. Av = \v.
Then x(t) = e™v is a solution of the system x' = AX.

Example
V= (_11) is an eigenvector of A = (1 _3 ) for the eigenvalue \ = 2,
i.e. Av = 2v.

Hence x(t) = &* (_11) is a solution of the homogeneous system x’ = Ax.

But:
To have the general solution of X’ = Ax we need two linearly independent solutions.
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A fact about linear independence

Definition
We say that two vectors v¢ = (2:) and v, = (ZZ) are linearly independent if the

determinant

Vi1
%

is # 0.

Vi2
Va2




A fact about linear independence
Definition
We say that two vectors v¢ = (2:) and v, = (ZZ) are linearly independent if the

determinant is # 0.

Vi1
%

Vi2
Va2

Example

1 1
Vi = <2> and vo = (_2> are
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A fact about linear independence

Definition

We say that two vectors vy = (5”) and v, = (512> are linearly independent if the
21 22

determinant | "' V12| is - 0.
V: Vo2
Example
1 1 . . 1 1
vy = (2) and vp = (_2> are linearly indep. because > _2‘ =—-4#0.
o Letx¢(t) = e™vy and xo(t) = e™2v,. Then
e e2vin| i) (Vi1 vz
Wixi, x2](t) = eMun @2y T e Vo1 Voo




A fact about linear independence

Definition

We say that two vectors vy = (5”) and v, = (&2) are linearly independent if the
21 22

determinant | "' V12| is - 0.
V: Vo2
Example
1 1 . . 1 1
vy = (2) and vp = (_2> are linearly indep. because > _2‘ =—-4#0.
o Letx¢(t) = e™vy and xo(t) = e”2v,. Then
e e2vin| i) (Vi1 vz
Wixi, x2](t) = eMun @2y T e Vo1 Voo

Consequence: If vy and v; are linearly independent, then W[x1, x2](t) # 0 for
all t, i.e. x1(t) = e™vy and xo(t) = e2v, are linearly independent.



How to solve x’ = Ax (general case)

Theorem
Suppose A\ and X, are the eigenvalues of A. Let

vy be an eigenvector of A of eigenvalue \+, i.e. Avy = \Vy,
Vo be an eigenvector of A of eigenvalue )y, i.e. AV = \oVao.

o Ifvy and vy are linearly independent, then
xi(t)=e™vy and xo(t) = e™2v,

are linearly independent solutions of x' = Ax.

In this case, the general solution of X' = AX is
x(t) = cre™vy + ce™?v,

where ¢y, ¢, are arbitrary constants.
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How to solve x’ = Ax (general case)

Theorem
Suppose A\ and X, are the eigenvalues of A. Let

vy be an eigenvector of A of eigenvalue \+, i.e. Avy = \Vy,
Vo be an eigenvector of A of eigenvalue )\, i.e. AV = \oV5.

o Ifvy and vy are linearly independent, then
xi(t)=e™vy and xo(t) = e™2v,
are linearly independent solutions of x' = Ax.
In this case, the general solution of X' = AX is
x(t) = cre™ vy + ce2v,

where ¢y, ¢, are arbitrary constants.

o Forinstance, if \1 # Xz, then vy and vy are linearly independent. So, the above
holds true.




Example:
Consider the system of two linear differential equations x’ = Ax, where

0 1
A= (9 )
o Find the eigenvalues Ay and X, of A.
o Find the eigenvectors of A of eigenvalue A1 and those of eigenvalue ..

At

o Fix an eigenvector vy of eigenvalue Ay and verify that x4 (t) = e*''vy is a solution

of the system.

o Some linear algebra: can you write the trace trace(A) of A and the determinant
det(A) of A in terms of the eigenvalues A1 and \,?

o Determine the general solution x’ = AX.
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Example:
Consider the system of two linear differential equations x’ = Ax, where

0 1
A= (9 )
o Find the eigenvalues Ay and X, of A.
o Find the eigenvectors of A of eigenvalue A1 and those of eigenvalue ..

At

o Fix an eigenvector vy of eigenvalue Ay and verify that x4 (t) = e*''vy is a solution

of the system.

o Some linear algebra: can you write the trace trace(A) of A and the determinant
det(A) of A in terms of the eigenvalues A1 and \,?

o Determine the general solution x’ = AX.

Answer:
x(t) = Cie~¥ (J3) + Coe72 (Jz) , Cy, C» constants

o Solvethe IVP:  x' =Ax, x(0) = <,11)
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The section 3.3 is not over...

... to be continued later...



