Section 3.3: Homogenous linear systems with constant coefficients

Main topics:

- Principle of superposition
- Wronskian and linear independence of solutions
- The general solution
- Use of eigenvalues and eigenvectors

The principle of superposition

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_{1}=\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}=\mathbf{x}_{\mathbf{2}}(t)$ are solutions of the homog. system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then, for any constants c_{1}, c_{2},

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{\mathbf{1}}(t)+c_{2} \mathbf{x}_{2}(t)
$$

is also a solution of the system.
This theorem provides a tool to generate solutions from two fixed solutions. It is known as the principle of superposition.

The principle of superposition

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_{1}=\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}=\mathbf{x}_{\mathbf{2}}(t)$ are solutions of the homog. system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then, for any constants c_{1}, c_{2},

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

is also a solution of the system.
This theorem provides a tool to generate solutions from two fixed solutions.
It is known as the principle of superposition.

Example:

$\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, where $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right)$.

The principle of superposition

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_{1}=\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}=\mathbf{x}_{\mathbf{2}}(t)$ are solutions of the homog. system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then, for any constants c_{1}, c_{2},

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

is also a solution of the system.
This theorem provides a tool to generate solutions from two fixed solutions. It is known as the principle of superposition.

Example:

$\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, where $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right)$.
Hence $\mathbf{x}(t)=c_{1}\binom{4}{1}+c_{2} e^{-3 t}\binom{-2}{1}$ is a solution for any choice of the constants c_{1} and c_{2}.
What are the compontents of $\mathbf{x}(t)$?

The principle of superposition

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_{1}=\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}=\mathbf{x}_{\mathbf{2}}(t)$ are solutions of the homog. system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then, for any constants c_{1}, c_{2},

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

is also a solution of the system.
This theorem provides a tool to generate solutions from two fixed solutions.
It is known as the principle of superposition.

Example:

$\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, where $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right)$.
Hence $\mathbf{x}(t)=c_{1}\binom{4}{1}+c_{2} e^{-3 t}\binom{-2}{1}$ is a solution for any choice of the constants c_{1} and c_{2}.
What are the compontents of $\mathbf{x}(t)$?

Definition

If $\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)$ for all t, then we say that \mathbf{x} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}, and we write it as: $\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$.

Wronskian of two solutions

Let $\mathbf{x}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)}$ and $\mathbf{x}_{2}(t)=\binom{x_{12}(t)}{x_{22}(t)}$ be two solutions of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

Definition

The Wronskian of \mathbf{x}_{1} and \mathbf{x}_{2} is the function $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]$ defined at t by the determinant

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|
$$

Wronskian of two solutions

Let $\mathbf{x}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)}$ and $\mathbf{x}_{2}(t)=\binom{x_{12}(t)}{x_{22}(t)}$ be two solutions of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

Definition

The Wronskian of \mathbf{x}_{1} and \mathbf{x}_{2} is the function $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]$ defined at t by the determinant

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|
$$

Example:

The Wronskian of $\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ is

Wronskian of two solutions

Let $\mathbf{x}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)}$ and $\mathbf{x}_{2}(t)=\binom{x_{12}(t)}{x_{22}(t)}$ be two solutions of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

Definition

The Wronskian of \mathbf{x}_{1} and \mathbf{x}_{2} is the function $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]$ defined at t by the determinant

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|
$$

Example:

The Wronskian of $\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ is

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{cc}
4 & -2 e^{-3 t} \\
1 & e^{-3 t}
\end{array}\right|=e^{-3 t}\left|\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right|=e^{-3 t}(4+2)=6 e^{-3 t}
$$

Linearly independent solutions

Definition

Let \mathbf{x}_{1} and \mathbf{x}_{2} be solutions of the homogenous system of linear DE's $\mathbf{x}^{\prime}=A \mathbf{x}$ both defined on an interval I.

- The solutions of the system are said linearly dependent in an open interval / if there are constants c_{1}, c_{2} (not both zero and independent of t) such that

$$
c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=0 \text { for all } t \in I
$$

- Two solutions that are not linearly dependent are called linearly independent.
- \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent if and only if $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$ for all t in I.
- Two solutions \mathbf{x}_{1} and \mathbf{x}_{2} that are linearly independent are said to form a fundamental set of solutions.

Remark: \mathbf{x}_{1} and \mathbf{x}_{2} are linearly dependent if and only if one is a constant multiple of the other: there is a constant k (independent of t) such that

$$
\mathbf{x}_{\mathbf{1}}(t)=k \mathbf{x}_{\mathbf{2}}(t) \text { for all } t \quad \text { or } \quad \mathbf{x}_{\mathbf{2}}(t)=k \mathbf{x}_{\mathbf{1}}(t) \text { for all } t .
$$

Linearly independent solutions

Definition

Let \mathbf{x}_{1} and \mathbf{x}_{2} be solutions of the homogenous system of linear DE's $\mathbf{x}^{\prime}=A \mathbf{x}$ both defined on an interval I.

- The solutions of the system are said linearly dependent in an open interval / if there are constants c_{1}, c_{2} (not both zero and independent of t) such that

$$
c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=0 \text { for all } t \in I
$$

- Two solutions that are not linearly dependent are called linearly independent.
- \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent if and only if $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$ for all t in I.
- Two solutions \mathbf{x}_{1} and \mathbf{x}_{2} that are linearly independent are said to form a fundamental set of solutions.

Remark: \mathbf{x}_{1} and \mathbf{x}_{2} are linearly dependent if and only if one is a constant multiple of the other: there is a constant k (independent of t) such that

$$
\mathbf{x}_{1}(t)=k \mathbf{x}_{2}(t) \text { for all } t \quad \text { or } \quad \mathbf{x}_{2}(t)=k \mathbf{x}_{1}(t) \text { for all } t
$$

Example:

$\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right)$.

Linearly independent solutions

Definition

Let \mathbf{x}_{1} and \mathbf{x}_{2} be solutions of the homogenous system of linear DE's $\mathbf{x}^{\prime}=A \mathbf{x}$ both defined on an interval I.

- The solutions of the system are said linearly dependent in an open interval / if there are constants c_{1}, c_{2} (not both zero and independent of t) such that

$$
c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=0 \text { for all } t \in I
$$

- Two solutions that are not linearly dependent are called linearly independent.
- \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent if and only if $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$ for all t in I.
- Two solutions \mathbf{x}_{1} and \mathbf{x}_{2} that are linearly independent are said to form a fundamental set of solutions.

Remark: \mathbf{x}_{1} and \mathbf{x}_{2} are linearly dependent if and only if one is a constant multiple of the other: there is a constant k (independent of t) such that

$$
\mathbf{x}_{1}(t)=k \mathbf{x}_{2}(t) \text { for all } t \quad \text { or } \quad \mathbf{x}_{2}(t)=k \mathbf{x}_{1}(t) \text { for all } t
$$

Example:

$\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, where $A=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right)$.
Are \mathbf{x}_{1} and $\mathbf{x}_{\mathbf{2}}$ linearly independent?

The general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$

Theorem (Theorem 3.3.4)

Suppose \mathbf{x}_{1} and \mathbf{x}_{2} for two linearly independent solutions of the system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then any solution of the above system is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

for some constants c_{1} and c_{2}. This is the general solution of the system. If, moreover, we fix an intitial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, where $\mathbf{x}_{0}=\binom{x_{10}}{x_{20}}$ is a constant vector, then the constants c_{1} and c_{2} are uniquely determined and the solution to the system is unique.

Conclusion:

- The general solution of a homogenous system of two linear first order DEs is a linear combination of two linearly independent solutions (=one is not a multiple of the other)
- To find the general solution it is enough to find two linearly independent solutions.
- An initial condition uniquely determines the constants c_{1} and c_{2} and hence yields a unique solution to an IVP.

Example

Let $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right) . \quad$ Consider the IVP: $\quad \mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\binom{2}{1}$.
We have shown: $\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are linearly independent solutions. (So they form a fundamental set of solutions.)

The general solution of the system $\mathbf{x}^{\prime}=\mathbf{A x}$ is

Example

Let $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right) . \quad$ Consider the IVP: $\quad \mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\binom{2}{1}$.
We have shown: $\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are linearly independent solutions. (So they form a fundamental set of solutions.)

The general solution of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{4}{1}+c_{2} e^{-3 t}\binom{-2}{1}=\binom{4 c_{1}-2 c_{2} e^{-3 t}}{c_{1}+c_{2} e^{-3 t}}
$$

where c_{1}, c_{2} are arbitrary constants.

Example

Let $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right) . \quad$ Consider the IVP: $\quad \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\binom{2}{1}$.
We have shown: $\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are linearly independent solutions. (So they form a fundamental set of solutions.)
The general solution of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{4}{1}+c_{2} e^{-3 t}\binom{-2}{1}=\binom{4 c_{1}-2 c_{2} e^{-3 t}}{c_{1}+c_{2} e^{-3 t}},
$$

where c_{1}, c_{2} are arbitrary constants.
We use the initial condition to determine the value of c_{1} and c_{2} :

$$
\binom{2}{1}=\mathbf{x}(0)=\binom{4 c_{1}-2 c_{2} e^{-3 \cdot 0}}{c_{1}+c_{2} e^{-3 \cdot 0}}=\binom{4 c_{1}-2 c_{2}}{c_{1}+c_{2}}
$$

Example

Let $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right) . \quad$ Consider the IVP: $\quad \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\binom{2}{1}$.
We have shown: $\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are linearly independent solutions. (So they form a fundamental set of solutions.)
The general solution of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{4}{1}+c_{2} e^{-3 t}\binom{-2}{1}=\binom{4 c_{1}-2 c_{2} e^{-3 t}}{c_{1}+c_{2} e^{-3 t}},
$$

where c_{1}, c_{2} are arbitrary constants.
We use the initial condition to determine the value of c_{1} and c_{2} :

$$
\binom{2}{1}=\mathbf{x}(0)=\binom{4 c_{1}-2 c_{2} e^{-3 \cdot 0}}{c_{1}+c_{2} e^{-3 \cdot 0}}=\binom{4 c_{1}-2 c_{2}}{c_{1}+c_{2}}
$$

i.e.

$$
\left\{\begin{array} { l }
{ 4 c _ { 1 } - 2 c _ { 2 } = 2 } \\
{ c _ { 1 } + c _ { 2 } = 1 }
\end{array} , \text { that is } \left\{\begin{array}{l}
2 c_{1}-c_{2}=1 \\
c_{1}+c_{2}=1
\end{array} . \text { So: } c_{1}=\frac{2}{3} \text { and } c_{2}=\frac{1}{3}\right.\right.
$$

Example

Let $\mathbf{A}=\left(\begin{array}{cc}-1 & 4 \\ 1 / 2 & -2\end{array}\right) . \quad$ Consider the IVP: $\quad \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\binom{2}{1}$.
We have shown: $\mathbf{x}_{1}(t)=\binom{4}{1}$ and $\mathbf{x}_{2}(t)=e^{-3 t}\binom{-2}{1}$ are linearly independent solutions. (So they form a fundamental set of solutions.)
The general solution of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{4}{1}+c_{2} e^{-3 t}\binom{-2}{1}=\binom{4 c_{1}-2 c_{2} e^{-3 t}}{c_{1}+c_{2} e^{-3 t}},
$$

where c_{1}, c_{2} are arbitrary constants.
We use the initial condition to determine the value of c_{1} and c_{2} :

$$
\binom{2}{1}=\mathbf{x}(0)=\binom{4 c_{1}-2 c_{2} e^{-3 \cdot 0}}{c_{1}+c_{2} e^{-3 \cdot 0}}=\binom{4 c_{1}-2 c_{2}}{c_{1}+c_{2}}
$$

i.e.

$$
\left\{\begin{array} { l }
{ 4 c _ { 1 } - 2 c _ { 2 } = 2 } \\
{ c _ { 1 } + c _ { 2 } = 1 }
\end{array} , \text { that is } \left\{\begin{array}{l}
2 c_{1}-c_{2}=1 \\
c_{1}+c_{2}=1
\end{array} . \text { So: } c_{1}=\frac{2}{3} \text { and } c_{2}=\frac{1}{3}\right.\right.
$$

Conclusion: the solution of the IVP is $\mathbf{x}(t)=\frac{2}{3}\binom{4}{1}+\frac{1}{3} e^{-3 t}\binom{-2}{1}$.

How to find solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$

The eigenvalues and eigenvectors of the matrix coefficients \mathbf{A} allow us to solve the homogenous system of first order linear DE $\mathbf{x}^{\prime}=\mathbf{A x}$.

Theorem

Suppose that \mathbf{v} is eigenvector of \mathbf{A} with eingenvalue λ, i.e. $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$. Then $\mathbf{x}(t)=e^{t \lambda} \mathbf{v}$ is a solution of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

Example

$\mathbf{v}=\binom{1}{-1}$ is an eigenvector of $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right)$ for the eigenvalue $\lambda=2$,
i.e. $\mathbf{A} \mathbf{v}=\mathbf{2 v}$.

Hence $\mathbf{x}(t)=e^{2 t}\binom{1}{-1}$ is a solution of the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

How to find solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$

The eigenvalues and eigenvectors of the matrix coefficients \mathbf{A} allow us to solve the homogenous system of first order linear DE $\mathbf{x}^{\prime}=\mathbf{A x}$.

Theorem

Suppose that \mathbf{v} is eigenvector of \mathbf{A} with eingenvalue λ, i.e. $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$. Then $\mathbf{x}(t)=e^{t \lambda} \mathbf{v}$ is a solution of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

Example

$\mathbf{v}=\binom{1}{-1}$ is an eigenvector of $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right)$ for the eigenvalue $\lambda=2$,
i.e. $\mathbf{A} \mathbf{v}=\mathbf{2 v}$.

Hence $\mathbf{x}(t)=e^{2 t}\binom{1}{-1}$ is a solution of the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

But:

To have the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ we need two linearly independent solutions.

A fact about linear independence

Definition

We say that two vectors $\mathbf{v}_{1}=\binom{v_{11}}{v_{21}}$ and $\mathbf{v}_{2}=\binom{v_{12}}{v_{22}}$ are linearly independent if the determinant $\left|\begin{array}{ll}v_{11} & v_{12} \\ v_{21} & v_{22}\end{array}\right|$ is $\neq 0$.

A fact about linear independence

Definition

We say that two vectors $\mathbf{v}_{1}=\binom{v_{11}}{v_{21}}$ and $\mathbf{v}_{2}=\binom{v_{12}}{v_{22}}$ are linearly independent if the determinant $\left|\begin{array}{ll}v_{11} & v_{12} \\ v_{21} & v_{22}\end{array}\right|$ is $\neq 0$.

Example

$$
\mathbf{v}_{1}=\binom{1}{2} \text { and } \mathbf{v}_{2}=\binom{1}{-2} \text { are }
$$

A fact about linear independence

Definition

We say that two vectors $\mathbf{v}_{1}=\binom{v_{11}}{v_{21}}$ and $\mathbf{v}_{2}=\binom{v_{12}}{v_{22}}$ are linearly independent if the determinant $\left|\begin{array}{ll}v_{11} & v_{12} \\ v_{21} & v_{22}\end{array}\right|$ is $\neq 0$.

Example
$\mathbf{v}_{1}=\binom{1}{2}$ and $\mathbf{v}_{2}=\binom{1}{-2}$ are linearly indep. because $\left|\begin{array}{cc}1 & 1 \\ 2 & -2\end{array}\right|=-4 \neq 0$.

- Let $\mathbf{x}_{1}(t)=e^{t \lambda_{1}} \mathbf{v}_{1}$ and $\mathbf{x}_{2}(t)=e^{t \lambda_{2}} \mathbf{v}_{2}$. Then

$$
\left.W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
e^{t \lambda_{1}} & v_{11}
\end{array} e^{t \lambda_{2}} v_{12}\right| \begin{array}{ll}
e^{t \lambda_{1}} v_{21} & e^{t \lambda_{2}} v_{22}
\end{array}\left|=e^{t\left(\lambda_{1}+\lambda_{2}\right)}\right| \begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array} \right\rvert\,
$$

A fact about linear independence

Definition

We say that two vectors $\mathbf{v}_{1}=\binom{v_{11}}{v_{21}}$ and $\mathbf{v}_{2}=\binom{v_{12}}{v_{22}}$ are linearly independent if the determinant $\left|\begin{array}{ll}v_{11} & v_{12} \\ v_{21} & v_{22}\end{array}\right|$ is $\neq 0$.

Example
$\mathbf{v}_{1}=\binom{1}{2}$ and $\mathbf{v}_{2}=\binom{1}{-2}$ are linearly indep. because $\left|\begin{array}{cc}1 & 1 \\ 2 & -2\end{array}\right|=-4 \neq 0$.

- Let $\mathbf{x}_{1}(t)=e^{t \lambda_{1}} \mathbf{v}_{1}$ and $\mathbf{x}_{2}(t)=e^{t \lambda_{2}} \mathbf{v}_{2}$. Then

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
e^{t \lambda_{1}} & v_{11} \\
e^{t \lambda_{1}} & e_{21} \\
e^{t \lambda_{2}} & e^{t \lambda_{2}} \\
v_{22}
\end{array}\right|=e^{t\left(\lambda_{1}+\lambda_{2}\right)}\left|\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right|
$$

- Consequence: If \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, then $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$ for all t, i.e. $\mathbf{x}_{1}(t)=e^{t \lambda_{1}} \mathbf{v}_{1}$ and $\mathbf{x}_{2}(t)=e^{t \lambda_{2}} \mathbf{v}_{2}$ are linearly independent.

How to solve $\mathbf{x}^{\prime}=\mathbf{A x} \quad$ (general case)

Theorem

Suppose λ_{1} and λ_{2} are the eigenvalues of \mathbf{A}. Let
\mathbf{v}_{1} be an eigenvector of \mathbf{A} of eigenvalue λ_{1}, i.e. $\mathbf{A} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}$,
\mathbf{v}_{2} be an eigenvector of \mathbf{A} of eigenvalue λ_{2}, i.e. $\mathbf{A} \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2}$.

- If \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, then

$$
\mathbf{x}_{1}(t)=e^{t \lambda_{1}} \mathbf{v}_{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{t \lambda_{2}} \mathbf{v}_{2}
$$

are linearly independent solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$.
In this case, the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ is

$$
\mathbf{x}(t)=c_{1} e^{t \lambda_{1}} \mathbf{v}_{1}+c_{2} e^{t \lambda_{2}} \mathbf{v}_{2}
$$

where c_{1}, c_{2} are arbitrary constants.

How to solve $\mathbf{x}^{\prime}=\mathbf{A x} \quad$ (general case)

Theorem

Suppose λ_{1} and λ_{2} are the eigenvalues of \mathbf{A}. Let
\mathbf{v}_{1} be an eigenvector of \mathbf{A} of eigenvalue λ_{1}, i.e. $\mathbf{A} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}$,
\mathbf{v}_{2} be an eigenvector of \mathbf{A} of eigenvalue λ_{2}, i.e. $\mathbf{A} \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2}$.

- If \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, then

$$
\mathbf{x}_{1}(t)=e^{t \lambda_{1}} \mathbf{v}_{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{t \lambda_{2}} \mathbf{v}_{2}
$$

are linearly independent solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.
In this case, the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ is

$$
\mathbf{x}(t)=c_{1} e^{t \lambda_{1}} \mathbf{v}_{1}+c_{2} e^{t \lambda_{2}} \mathbf{v}_{2}
$$

where c_{1}, c_{2} are arbitrary constants.

- For instance, if $\lambda_{1} \neq \lambda_{2}$, then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. So, the above holds true.

Example:

Consider the system of two linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$, where

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right) .
$$

- Find the eigenvalues λ_{1} and λ_{2} of \mathbf{A}.
- Find the eigenvectors of \mathbf{A} of eigenvalue λ_{1} and those of eigenvalue λ_{2}.
- Fix an eigenvector \mathbf{v}_{1} of eigenvalue λ_{1} and verify that $\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}$ is a solution of the system.
- Some linear algebra: can you write the trace trace(\mathbf{A}) of \mathbf{A} and the determinant $\operatorname{det}(\mathbf{A})$ of \mathbf{A} in terms of the eigenvalues λ_{1} and λ_{2} ?
- Determine the general solution $\mathbf{x}^{\prime}=\mathbf{A x}$.

Example:

Consider the system of two linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$, where

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right) .
$$

- Find the eigenvalues λ_{1} and λ_{2} of \mathbf{A}.
- Find the eigenvectors of \mathbf{A} of eigenvalue λ_{1} and those of eigenvalue λ_{2}.
- Fix an eigenvector \mathbf{v}_{1} of eigenvalue λ_{1} and verify that $\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}$ is a solution of the system.
- Some linear algebra: can you write the trace trace(\mathbf{A}) of \mathbf{A} and the determinant $\operatorname{det}(\mathbf{A})$ of \mathbf{A} in terms of the eigenvalues λ_{1} and λ_{2} ?
- Determine the general solution $\mathbf{x}^{\prime}=\mathbf{A x}$.

Answer:

$$
\mathbf{x}(t)=C_{1} e^{-3 t}\binom{1}{-3}+C_{2} e^{-2 t}\binom{1}{-2}, \quad C_{1}, C_{2} \text { constants }
$$

- Solve the IVP: $\quad \mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\binom{1}{-1}$.

The section 3.3 is not over...
... to be continued later...

