
Section 3.3: Homogenous linear systems with
constant coefficients

Main topics:

Principle of superposition

Wronskian and linear independence of solutions

The general solution

Use of eigenvalues and eigenvectors
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The principle of superposition
Theorem (Theorem 3.3.1)
Suppose that x1 = x1(t) and x2 = x2(t) are solutions of the homog. system x′ = Ax.
Then, for any constants c1, c2,

x(t) = c1x1(t) + c2x2(t)

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions.
It is known as the principle of superposition.

Example:

x1(t) =
(

4
1

)
and x2(t) = e−3t

(
−2
1

)
are solutions of x′ = Ax, where A =

(
−1 4
1/2 −2

)
.

Hence x(t) = c1

(
4
1

)
+ c2e−3t

(
−2
1

)
is a solution for any choice of the constants c1 and c2.

What are the compontents of x(t)?

Definition
If x(t) = c1x1(t) + c2x2(t) for all t , then we say that x is a linear combination of x1

and x2, and we write it as: x = c1x1 + c2x2.
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Wronskian of two solutions

Let x1(t) =
(

x11(t)
x21(t)

)
and x2(t) =

(
x12(t)
x22(t)

)
be two solutions of the system x′ = Ax.

Definition
The Wronskian of x1 and x2 is the function W [x1, x2] defined at t by the determinant

W [x1, x2](t) =
∣∣∣∣x11(t) x12(t)
x21(t) x22(t)

∣∣∣∣

Example:

The Wronskian of x1(t) =
(

4
1

)
and x2(t) = e−3t

(
−2
1

)
is

W [x1, x2](t) =
∣∣∣∣4 −2e−3t

1 e−3t

∣∣∣∣ = e−3t
∣∣∣∣4 −2
1 1

∣∣∣∣ = e−3t (4 + 2) = 6e−3t .
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Linearly independent solutions
Definition
Let x1 and x2 be solutions of the homogenous system of linear DE’s x′ = Ax both
defined on an interval I.

The solutions of the system are said linearly dependent in an open interval I if
there are constants c1, c2 (not both zero and independent of t) such that

c1x1(t) + c2x2(t) = 0 for all t ∈ I.

Two solutions that are not linearly dependent are called linearly independent.

x1 and x2 are linearly independent if and only if W [x1, x2](t) 6= 0 for all t in I.

Two solutions x1 and x2 that are linearly independent are said to form a
fundamental set of solutions.

Remark: x1 and x2 are linearly dependent if and only if one is a constant multiple of
the other: there is a constant k (independent of t) such that

x1(t) = kx2(t) for all t or x2(t) = kx1(t) for all t .

Example:

x1(t) =
(

4
1

)
and x2(t) = e−3t

(
−2
1

)
are solutions of x′ = Ax, where A =

(
−1 4
1/2 −2

)
.

Are x1 and x2 linearly independent?
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The general solution of x′ = Ax

Theorem (Theorem 3.3.4)
Suppose x1 and x2 for two linearly independent solutions of the system x′ = Ax.
Then any solution of the above system is of the form

x(t) = c1x1(t) + c2x2(t)

for some constants c1 and c2. This is the general solution of the system.

If, moreover, we fix an intitial condition x(t0) = x0, where x0 =

(
x10

x20

)
is a constant

vector, then the constants c1 and c2 are uniquely determined and the solution to the
system is unique.

Conclusion:

The general solution of a homogenous system of two linear first order DEs is a
linear combination of two linearly independent solutions (=one is not a multiple
of the other)

To find the general solution it is enough to find two linearly independent solutions.

An initial condition uniquely determines the constants c1 and c2 and hence yields
a unique solution to an IVP.
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Example

Let A =

(
−1 4
1/2 −2

)
. Consider the IVP: x′ = Ax, x(0) =

(
2
1

)
.

We have shown: x1(t) =
(

4
1

)
and x2(t) = e−3t

(
−2
1

)
are linearly independent

solutions. (So they form a fundamental set of solutions.)

The general solution of the system x′ = Ax is

x(t) = c1x1(t) + c2x2(t) = c1

(
4
1

)
+ c2e−3t

(
−2
1

)
=

(
4c1 − 2c2e−3t

c1 + c2e−3t

)
,

where c1, c2 are arbitrary constants.

We use the initial condition to determine the value of c1 and c2:(
2
1

)
= x(0) =

(
4c1 − 2c2e−3·0

c1 + c2e−3·0

)
=

(
4c1 − 2c2

c1 + c2

)
i.e. {

4c1 − 2c2 = 2
c1 + c2 = 1

, that is

{
2c1 − c2 = 1
c1 + c2 = 1

. So: c1 =
2
3

and c2 =
1
3
.

Conclusion: the solution of the IVP is x(t) =
2
3

(
4
1

)
+

1
3

e−3t
(
−2
1

)
.
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How to find solutions of x′ = Ax

The eigenvalues and eigenvectors of the matrix coefficients A allow us to solve the
homogenous system of first order linear DE x′ = Ax.

Theorem
Suppose that v is eigenvector of A with eingenvalue λ, i.e. Av = λv.

Then x(t) = etλv is a solution of the system x′ = Ax.

Example

v =

(
1
−1

)
is an eigenvector of A =

(
1 −1
1 3

)
for the eigenvalue λ = 2,

i.e. Av = 2v.

Hence x(t) = e2t
(

1
−1

)
is a solution of the homogeneous system x′ = Ax.

But:
To have the general solution of x′ = Ax we need two linearly independent solutions.
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A fact about linear independence

Definition

We say that two vectors v1 =

(
v11

v21

)
and v2 =

(
v12

v22

)
are linearly independent if the

determinant
∣∣∣∣v11 v12

v21 v22

∣∣∣∣ is 6= 0.

Example

v1 =

(
1
2

)
and v2 =

(
1
−2

)
are linearly indep. because

∣∣∣∣1 1
2 −2

∣∣∣∣ = −4 6= 0.

Let x1(t) = etλ1 v1 and x2(t) = etλ2 v2. Then

W [x1, x2](t) =
∣∣∣∣etλ1 v11 etλ2 v12

etλ1 v21 etλ2 v22

∣∣∣∣ = et(λ1+λ2)

∣∣∣∣v11 v12

v21 v22

∣∣∣∣
Consequence: If v1 and v2 are linearly independent, then W [x1, x2](t) 6= 0 for
all t , i.e. x1(t) = etλ1 v1 and x2(t) = etλ2 v2 are linearly independent.
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How to solve x′ = Ax (general case)

Theorem
Suppose λ1 and λ2 are the eigenvalues of A. Let

v1 be an eigenvector of A of eigenvalue λ1, i.e. Av1 = λ1v1,
v2 be an eigenvector of A of eigenvalue λ2, i.e. Av2 = λ2v2.

If v1 and v2 are linearly independent, then

x1(t) = etλ1 v1 and x2(t) = etλ2 v2

are linearly independent solutions of x′ = Ax.

In this case, the general solution of x′ = Ax is

x(t) = c1etλ1 v1 + c2etλ2 v2

where c1, c2 are arbitrary constants.

For instance, if λ1 6= λ2, then v1 and v2 are linearly independent. So, the above
holds true.
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For instance, if λ1 6= λ2, then v1 and v2 are linearly independent. So, the above
holds true.
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Example:
Consider the system of two linear differential equations x′ = Ax, where

A =

(
0 1
−6 −5

)
.

Find the eigenvalues λ1 and λ2 of A.

Find the eigenvectors of A of eigenvalue λ1 and those of eigenvalue λ2.

Fix an eigenvector v1 of eigenvalue λ1 and verify that x1(t) = eλ1tv1 is a solution
of the system.

Some linear algebra: can you write the trace trace(A) of A and the determinant
det(A) of A in terms of the eigenvalues λ1 and λ2?

Determine the general solution x′ = Ax.

Answer:

x(t) = C1e−3t
(

1
−3

)
+ C2e−2t

(
1
−2

)
, C1,C2 constants

Solve the IVP: x′ = Ax, x(0) =
(

1
−1

)
.
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The section 3.3 is not over...
... to be continued later...
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