Section 3.3: Homogenous linear systems with constant coefficients

Main topics:

- Principle of superposition
- Wronskian and linear independence of solutions
- The general solution
- Use of eigenvalues and eigenvectors

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_1 = \mathbf{x}_1(t)$ and $\mathbf{x}_2 = \mathbf{x}_2(t)$ are solutions of the homog. system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Then, for any constants c_1, c_2 ,

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions. It is known as the **principle of superposition**.

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_1 = \mathbf{x}_1(t)$ and $\mathbf{x}_2 = \mathbf{x}_2(t)$ are solutions of the homog. system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Then, for any constants c_1, c_2 ,

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions. It is known as the **principle of superposition**.

Example:

$$\mathbf{x}_{1}(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 and $\mathbf{x}_{2}(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where $\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$.

< 回 > < 三 > < 三 >

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_1 = \mathbf{x}_1(t)$ and $\mathbf{x}_2 = \mathbf{x}_2(t)$ are solutions of the homog. system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Then, for any constants c_1, c_2 ,

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions. It is known as the **principle of superposition**.

Example:

 $\mathbf{x}_1(t) = \begin{pmatrix} 4\\ 1 \end{pmatrix}$ and $\mathbf{x}_2(t) = e^{-3t} \begin{pmatrix} -2\\ 1 \end{pmatrix}$ are solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where $\mathbf{A} = \begin{pmatrix} -1 & 4\\ 1/2 & -2 \end{pmatrix}$. Hence $\mathbf{x}(t) = c_1 \begin{pmatrix} 4\\ 1 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} -2\\ 1 \end{pmatrix}$ is a solution for any choice of the constants c_1 and c_2 . What are the components of $\mathbf{x}(t)$?

くぼう くほう くほう

Theorem (Theorem 3.3.1)

Suppose that $\mathbf{x}_1 = \mathbf{x}_1(t)$ and $\mathbf{x}_2 = \mathbf{x}_2(t)$ are solutions of the homog. system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Then, for any constants c_1, c_2 ,

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$

is also a solution of the system.

This theorem provides a tool to generate solutions from two fixed solutions. It is known as the **principle of superposition**.

Example:

 $\mathbf{x}_{1}(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{x}_{2}(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where $\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$. Hence $\mathbf{x}(t) = c_{1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} + c_{2}e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ is a solution for any choice of the constants c_{1} and c_{2} . What are the components of $\mathbf{x}(t)$?

Definition

If $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$ for all *t*, then we say that **x** is a **linear combination** of \mathbf{x}_1 and \mathbf{x}_2 , and we write it as: $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$.

Wronskian of two solutions

Let
$$\mathbf{x}_1(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix}$$
 and $\mathbf{x}_2(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$ be two solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Definition

The Wronskian of x_1 and x_2 is the function $W[x_1, x_2]$ defined at t by the determinant

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}$$

Wronskian of two solutions

Let
$$\mathbf{x}_1(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix}$$
 and $\mathbf{x}_2(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$ be two solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Definition

The Wronskian of x_1 and x_2 is the function $W[x_1, x_2]$ defined at t by the determinant

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}$$

Example:

The Wronskian of
$$\mathbf{x_1}(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 and $\mathbf{x_2}(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ is

Wronskian of two solutions

Let
$$\mathbf{x}_1(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix}$$
 and $\mathbf{x}_2(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$ be two solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Definition

The Wronskian of x_1 and x_2 is the function $W[x_1, x_2]$ defined at t by the determinant

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}$$

Example:

The Wronskian of
$$\mathbf{x_1}(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 and $\mathbf{x_2}(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ is

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} 4 & -2e^{-3t} \\ 1 & e^{-3t} \end{vmatrix} = e^{-3t} \begin{vmatrix} 4 & -2 \\ 1 & 1 \end{vmatrix} = e^{-3t} (4+2) = 6e^{-3t}.$$

Linearly independent solutions

Definition

Let x_1 and x_2 be solutions of the homogenous system of linear DE's x' = Ax both defined on an interval *I*.

• The solutions of the system are said **linearly dependent** in an open interval *I* if there are constants c_1 , c_2 (not both zero and *independent of t*) such that

 $c_1\mathbf{x_1}(t) + c_2\mathbf{x_2}(t) = 0$ for all $t \in I$.

- Two solutions that are not linearly dependent are called linearly independent.
- $\mathbf{x_1}$ and $\mathbf{x_2}$ are linearly independent if and only if $W[\mathbf{x_1}, \mathbf{x_2}](t) \neq 0$ for all t in I.
- Two solutions x₁ and x₂ that are linearly independent are said to form a fundamental set of solutions.

Remark: \mathbf{x}_1 and \mathbf{x}_2 are linearly dependent if and only if one is a constant multiple of the other: there is a constant *k* (independent of *t*) such that

 $\mathbf{x}_1(t) = k\mathbf{x}_2(t)$ for all t or $\mathbf{x}_2(t) = k\mathbf{x}_1(t)$ for all t.

Linearly independent solutions

Definition

Let \mathbf{x}_1 and \mathbf{x}_2 be solutions of the homogenous system of linear DE's $\mathbf{x}' = A\mathbf{x}$ both defined on an interval I.

 The solutions of the system are said linearly dependent in an open interval l if there are constants c_1 , c_2 (not both zero and *independent of t*) such that

 $c_1 \mathbf{x_1}(t) + c_2 \mathbf{x_2}(t) = 0$ for all $t \in I$.

- Two solutions that are not linearly dependent are called linearly independent.
- \mathbf{x}_1 and \mathbf{x}_2 are linearly independent if and only if $W[\mathbf{x}_1, \mathbf{x}_2](t) \neq 0$ for all t in I.
- Two solutions x₁ and x₂ that are linearly independent are said to form a fundamental set of solutions.

Remark: x_1 and x_2 are linearly dependent if and only if one is a constant multiple of the other: there is a constant k (independent of t) such that

$$\mathbf{x}_1(t) = k\mathbf{x}_2(t)$$
 for all t or $\mathbf{x}_2(t) = k\mathbf{x}_1(t)$ for all t .

Example:

$$\mathbf{x}_{1}(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
 and $\mathbf{x}_{2}(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are solutions of $\mathbf{x}' = A\mathbf{x}$, where $A = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$.

3

Linearly independent solutions

Definition

Let x_1 and x_2 be solutions of the homogenous system of linear DE's x' = Ax both defined on an interval *I*.

• The solutions of the system are said **linearly dependent** in an open interval *I* if there are constants *c*₁, *c*₂ (not both zero and *independent of t*) such that

 $c_1\mathbf{x_1}(t) + c_2\mathbf{x_2}(t) = 0$ for all $t \in I$.

- Two solutions that are not linearly dependent are called linearly independent.
- $\mathbf{x_1}$ and $\mathbf{x_2}$ are linearly independent if and only if $W[\mathbf{x_1}, \mathbf{x_2}](t) \neq 0$ for all t in I.
- Two solutions x₁ and x₂ that are linearly independent are said to form a fundamental set of solutions.

Remark: \mathbf{x}_1 and \mathbf{x}_2 are linearly dependent if and only if one is a constant multiple of the other: there is a constant *k* (independent of *t*) such that

$$\mathbf{x}_1(t) = k\mathbf{x}_2(t)$$
 for all t or $\mathbf{x}_2(t) = k\mathbf{x}_1(t)$ for all t .

Example:

$$\mathbf{x}_1(t) = \begin{pmatrix} 4\\ 1 \end{pmatrix}$$
 and $\mathbf{x}_2(t) = e^{-3t} \begin{pmatrix} -2\\ 1 \end{pmatrix}$ are solutions of $\mathbf{x}' = A\mathbf{x}$, where $A = \begin{pmatrix} -1 & 4\\ 1/2 & -2 \end{pmatrix}$.
Are \mathbf{x}_1 and \mathbf{x}_2 linearly independent?

The general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$

Theorem (Theorem 3.3.4)

Suppose x_1 and x_2 for two linearly independent solutions of the system x' = Ax. Then any solution of the above system is of the form

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$

for some constants c_1 and c_2 . This is the **general solution** of the system.

If, moreover, we fix an intitial condition $\mathbf{x}(t_0) = \mathbf{x}_0$, where $\mathbf{x}_0 = \begin{pmatrix} x_{10} \\ x_{20} \end{pmatrix}$ is a constant vector, then the constants c_1 and c_2 are uniquely determined and the solution to the system is unique.

Conclusion:

- The general solution of a homogenous system of two linear first order DEs is a linear combination of two linearly independent solutions (=one is not a multiple of the other)
- To find the general solution it is enough to find two linearly independent solutions.
- An initial condition uniquely determines the constants c₁ and c₂ and hence yields a unique solution to an IVP.

ヘロア 人間 アメヨア 人口 ア

Let
$$\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$$
. Consider the IVP: $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

We have shown: $\mathbf{x}_1(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{x}_2(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are linearly independent solutions. (So they form a fundamental set of solutions.)

The general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

Let
$$\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$$
. Consider the IVP: $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

We have shown: $\mathbf{x}_1(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{x}_2(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are linearly independent solutions. (So they form a fundamental set of solutions.)

The general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) = c_1 \begin{pmatrix} 4 \\ 1 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4c_1 - 2c_2 e^{-3t} \\ c_1 + c_2 e^{-3t} \end{pmatrix},$$

where c_1, c_2 are arbitrary constants.

Let
$$\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$$
. Consider the IVP: $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

We have shown: $\mathbf{x}_1(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{x}_2(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are linearly independent solutions. (So they form a fundamental set of solutions.)

The general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) = c_1 \begin{pmatrix} 4 \\ 1 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4c_1 - 2c_2 e^{-3t} \\ c_1 + c_2 e^{-3t} \end{pmatrix},$$

where c_1, c_2 are arbitrary constants.

We use the initial condition to determine the value of c_1 and c_2 :

$$\binom{2}{1} = \mathbf{x}(0) = \binom{4c_1 - 2c_2e^{-3 \cdot 0}}{c_1 + c_2e^{-3 \cdot 0}} = \binom{4c_1 - 2c_2}{c_1 + c_2}$$

Let
$$\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$$
. Consider the IVP: $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

We have shown: $\mathbf{x}_1(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{x}_2(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are linearly independent solutions. (So they form a fundamental set of solutions.)

The general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) = c_1 \begin{pmatrix} 4 \\ 1 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4c_1 - 2c_2 e^{-3t} \\ c_1 + c_2 e^{-3t} \end{pmatrix},$$

where c_1, c_2 are arbitrary constants.

We use the initial condition to determine the value of c_1 and c_2 :

$$\binom{2}{1} = \mathbf{x}(0) = \binom{4c_1 - 2c_2e^{-3 \cdot 0}}{c_1 + c_2e^{-3 \cdot 0}} = \binom{4c_1 - 2c_2}{c_1 + c_2}$$

i.e.

$$\begin{cases} 4c_1 - 2c_2 = 2\\ c_1 + c_2 = 1 \end{cases}, \text{ that is } \begin{cases} 2c_1 - c_2 = 1\\ c_1 + c_2 = 1 \end{cases}. \text{ So: } c_1 = \frac{2}{3} \text{ and } c_2 = \frac{1}{3}. \end{cases}$$

Let
$$\mathbf{A} = \begin{pmatrix} -1 & 4 \\ 1/2 & -2 \end{pmatrix}$$
. Consider the IVP: $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

We have shown: $\mathbf{x}_1(t) = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{x}_2(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are linearly independent solutions. (So they form a fundamental set of solutions.)

The general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) = c_1 \begin{pmatrix} 4 \\ 1 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4c_1 - 2c_2 e^{-3t} \\ c_1 + c_2 e^{-3t} \end{pmatrix},$$

where c_1 , c_2 are arbitrary constants.

We use the initial condition to determine the value of c_1 and c_2 :

$$\binom{2}{1} = \mathbf{x}(0) = \binom{4c_1 - 2c_2e^{-3\cdot 0}}{c_1 + c_2e^{-3\cdot 0}} = \binom{4c_1 - 2c_2}{c_1 + c_2}$$

i.e.

$$\begin{cases} 4c_1 - 2c_2 = 2\\ c_1 + c_2 = 1 \end{cases}, \text{ that is } \begin{cases} 2c_1 - c_2 = 1\\ c_1 + c_2 = 1 \end{cases}. \text{ So: } c_1 = \frac{2}{3} \text{ and } c_2 = \frac{1}{3}. \end{cases}$$

Conclusion: the solution of the IVP is $\mathbf{x}(t) = \frac{2}{3} \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \frac{1}{3} e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

How to find solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$

The eigenvalues and eigenvectors of the matrix coefficients **A** allow us to solve the homogenous system of first order linear DE $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Theorem

Suppose that **v** is eigenvector of **A** with eingenvalue λ , i.e. $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$. Then $\mathbf{x}(t) = e^{t\lambda}\mathbf{v}$ is a solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Example

$$\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 is an eigenvector of $A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$ for the eigenvalue $\lambda = 2$, i.e. $\mathbf{Av} = 2\mathbf{v}$.
Hence $\mathbf{x}(t) = e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is a solution of the homogeneous system $\mathbf{x}' = \mathbf{Ax}$.

How to find solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$

The eigenvalues and eigenvectors of the matrix coefficients **A** allow us to solve the homogenous system of first order linear DE $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Theorem

Suppose that **v** is eigenvector of **A** with eingenvalue λ , i.e. $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$. Then $\mathbf{x}(t) = e^{t\lambda}\mathbf{v}$ is a solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Example

$$\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 is an eigenvector of $A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$ for the eigenvalue $\lambda = 2$, i.e. $\mathbf{Av} = 2\mathbf{v}$.
Hence $\mathbf{x}(t) = e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is a solution of the homogeneous system $\mathbf{x}' = \mathbf{Ax}$.

But:

To have the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ we need two linearly independent solutions.

・ロット 御マ キョン・

Definition

We say that two vectors $\mathbf{v}_1 = \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix}$ are **linearly independent** if the determinant $\begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix}$ is $\neq 0$.

Definition

We say that two vectors $\mathbf{v}_1 = \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix}$ are **linearly independent** if the determinant $\begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix}$ is $\neq 0$.

Example

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ are

Definition

We say that two vectors $\mathbf{v}_1 = \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix}$ are **linearly independent** if the determinant $\begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix}$ is $\neq 0$.

Example

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ are linearly indep. because $\begin{vmatrix} 1 & 1 \\ 2 & -2 \end{vmatrix} = -4 \neq 0$.

• Let
$$\mathbf{x}_1(t) = e^{t\lambda_1}\mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{t\lambda_2}\mathbf{v}_2$. Then

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} e^{t\lambda_1} v_{11} & e^{t\lambda_2} v_{12} \\ e^{t\lambda_1} v_{21} & e^{t\lambda_2} v_{22} \end{vmatrix} = e^{t(\lambda_1 + \lambda_2)} \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix}$$

< 回 > < 回 > < 回 >

Definition

We say that two vectors $\mathbf{v}_1 = \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix}$ are **linearly independent** if the determinant $\begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix}$ is $\neq 0$.

Example

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ are linearly indep. because $\begin{vmatrix} 1 & 1 \\ 2 & -2 \end{vmatrix} = -4 \neq 0$.

• Let
$$\mathbf{x}_1(t) = e^{t\lambda_1} \mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{t\lambda_2} \mathbf{v}_2$. Then

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} e^{t\lambda_1} v_{11} & e^{t\lambda_2} v_{12} \\ e^{t\lambda_1} v_{21} & e^{t\lambda_2} v_{22} \end{vmatrix} = e^{t(\lambda_1 + \lambda_2)} \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix}$$

Consequence: If v₁ and v₂ are linearly independent, then W[x₁, x₂](t) ≠ 0 for all t, i.e. x₁(t) = e^{tλ₁}v₁ and x₂(t) = e^{tλ₂}v₂ are linearly independent.

> < 同 > < 回 > < 回 > <</p>

How to solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$ (general case)

Theorem

Suppose λ_1 and λ_2 are the eigenvalues of **A**. Let

 \mathbf{v}_1 be an eigenvector of \mathbf{A} of eigenvalue λ_1 , i.e. $\mathbf{Av}_1 = \lambda_1 \mathbf{v}_1$, \mathbf{v}_2 be an eigenvector of \mathbf{A} of eigenvalue λ_2 , i.e. $\mathbf{Av}_2 = \lambda_2 \mathbf{v}_2$.

• If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent, then

 $\mathbf{x}_1(t) = e^{t\lambda_1}\mathbf{v}_1$ and $\mathbf{x}_2(t) = e^{t\lambda_2}\mathbf{v}_2$

are linearly independent solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

In this case, the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 e^{t\lambda_1} \mathbf{v}_1 + c_2 e^{t\lambda_2} \mathbf{v}_2$$

where c_1, c_2 are arbitrary constants.

< ロ > < 同 > < 回 > < 回 >

How to solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$ (general case)

Theorem

Suppose λ_1 and λ_2 are the eigenvalues of **A**. Let

 v_1 be an eigenvector of **A** of eigenvalue λ_1 , i.e. $Av_1 = \lambda_1 v_1$, v_2 be an eigenvector of **A** of eigenvalue λ_2 , i.e. $Av_2 = \lambda_2 v_2$.

• If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent, then

 $\mathbf{x}_1(t) = e^{t\lambda_1} \mathbf{v}_1$ and $\mathbf{x}_2(t) = e^{t\lambda_2} \mathbf{v}_2$

are linearly independent solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

In this case, the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x}(t) = c_1 e^{t\lambda_1} \mathbf{v}_1 + c_2 e^{t\lambda_2} \mathbf{v}_2$$

where c_1, c_2 are arbitrary constants.

For instance, if λ₁ ≠ λ₂, then v₁ and v₂ are linearly independent. So, the above holds true.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the system of two linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix}.$$

- Find the eigenvalues λ_1 and λ_2 of **A**.
- Find the eigenvectors of A of eigenvalue λ₁ and those of eigenvalue λ₂.
- Fix an eigenvector v₁ of eigenvalue λ₁ and verify that x₁(t) = e^{λ₁t}v₁ is a solution of the system.
- Some linear algebra: can you write the trace trace(A) of A and the determinant det(A) of A in terms of the eigenvalues λ₁ and λ₂?
- Determine the general solution $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

Consider the system of two linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix}.$$

- Find the eigenvalues λ_1 and λ_2 of **A**.
- Find the eigenvectors of A of eigenvalue λ₁ and those of eigenvalue λ₂.
- Fix an eigenvector v₁ of eigenvalue λ₁ and verify that x₁(t) = e^{λ₁t}v₁ is a solution of the system.
- Some linear algebra: can you write the trace trace(A) of A and the determinant det(A) of A in terms of the eigenvalues λ₁ and λ₂?

Determine the general solution x' = Ax.
Answer:

$$\mathbf{x}(t) = C_1 e^{-3t} \begin{pmatrix} 1 \\ -3 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \qquad C_1, C_2 \text{ constants}$$

• Solve the IVP: $\mathbf{x}' = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$

The section 3.3 is not over... ... to be continued later...

æ

イロト イヨト イヨト イヨト